概念
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 当a取非零的有理数时是比较容易理解的,而对于a取无理数时,初学者则不大容易理解了。因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续性的极为深刻的知识。 特性 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号下(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数a是负整数时,设a=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么
a小于0时,x不等于0; a的分母为偶数时,x不小于0; a的分母为奇数时,x取R。
定义域与值域
当a为不同的数值时,幂函数的定义域的不同情况如下:
1.如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数, 则x不能小于0,这时函数的定义域为大于0的所有实数;
2.如果同时q为奇数,则函数的定义域为不等于0 的所有实数。 当x为不同的数值时,幂函数的值域的不同情况如下:
1.在x大于0时,函数的值域总是大于0的实数。
2. 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的, 因此下面给出幂函数在第一象限的各自情况.
第一象限的特殊性
(1)所有的图形都通过(1,0)这点.(a≠0) a>0时 图象过点(0,0)和(1,1)
(2)当a大于0时,幂函数为单调递增为增函数,但y=x^2,在(-∞,0)上单调递减。 而a小于0时,幂函数为单调递减为减函数。
(3)当a大于1时,幂函数图形下凸(竖抛);当a小于1大于0时,幂函数图形上凸(横抛)。当a小于0时,图像为双曲线。
(4)当a小于0时,a越小,图形倾斜程度越大。 (5)显然幂函数无界限。 (6)a=2n,该函数为偶函数 {x|x≠0}。
图象
幂函数
幂函数的图象:
①当a≤-1且a为奇数时,函数在第一、第三象限为减函数 ②当a≤-1且a为偶数时,函数在第二象限为增函数
③当a=0且x不为0时,函数图象平行于x轴且y=1、但不过(0,1) ④当0⑤当a≥1且a为奇数时,函数是奇函数 ⑥当a≥1且a为偶数时,函数是偶函数 幂函数的图像不过第四象限 因篇幅问题不能全部显示,请点此查看更多更全内容