第一部分 单方程计量经济模型Eviews操作
(二)多重共线性
目的:1、正确使用EVIEWS
2、能根据计算结果进行多重共线性检验和出现多重共线性时的补救。
实例:我国钢材供应量分析(多重共线性检验及补救)
通过分析我国改革开放以来(1978-1997)钢材供应量的历史资料,可以建立一个单一方程模型。根据理论及对现实情况的认识,影响我国钢材供应量Y(万吨)的主要因素有:原油产量X1(万吨),生铁产量X2(万吨),原煤产量X3(万吨),电力产量X4(亿千瓦小时),固定资产投资X5(亿元),国内生产总值X6(亿元),铁路运输量X7(万吨)。 obs 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 X1 10405 10615 10595 10122 10212 10607 11461 12490 13069 13414 13705 13764 13831 14099 14210 14524 14608 X2 3479.00 3673 3802 3417 3551 3738 4001 4834 5064 5503 5704 5820 6238 6765 7589 8956 9741 X3 6.81 6.35 6.2 6.22 6.66 7.15 7.89 8.72 8.94 9.28 9.8 10.54 10.8 10.87 11.16 11.5 12.4 13.97 X4 2566 2820 3006 3093 3277 3514 3770 4107 4495 4973 5452 5848 6212 6775 7539 8395 9281 X5 668.72 699.36 746.9 638.21 805.9 885.26 1052.43 1523.51 X6 X7 Y 2208 2497 2716 2670 2920 3072 3372 3693 4058 4386 4689 4859 5153 5638 6697 7716 8428 8979 9338 9978 3624.1 110119 4038.2 111893 4517.8 111279 4862.4 107673 5294.7 113495 5934.5 118784 7171 124074 8964.4 130709 1795.32 10202.2 135635 2101.69 11962.5 140653 2554.86 14928.3 144948 2340.52 16909.2 151489 2534 18547.9 150681 3139.03 21617.8 152893 4473.76 26638.1 157627 6811.35 34634.4 162663 9355.35 46759.4 163093 1995 15004.95 10529.27 13.61 1996 15733.39 10722.5 设模型的函数形式为:
10070.3 10702.97 58478.1 165855 10813.1 12185.79 67884.6 168803 1997 16074.14 11511.41 13.73 11355.53 13838.96 74772.4 169734 Y01X12X23X34X45X56X67X7
一、运用OLS估计法对上式中参数进行估计,EVIEWS操作步骤为:
1、 在FILE菜单中选择NEW-WORKFILE,输入起止时间。
2、 在主窗口菜单选QUICK-EMPTY GROUP,在编辑数据区输入Y X1 X2 X3 X4 X5 X6 X7
所对应的数据。
1
计量经济软件Eviews上机指导及演示示例
3、 在主窗口菜单选在QUICK-ESTIMATE EQUATION,对参数做OSL估计,输出结果见下
表:
Variable
CoefficienStd. Error t-Statistic
t
C X1 X2 X3 X4 X5 X6 X7
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
139.2362 -0.051954 0.127532 -24.29427 0.863283 0.330914 -0.070015 0.002305
718.2493 0.132466 0.186798 0.105592 0.019087
0.193855 0.962751 4.621475 3.133889 0.120780
0.8495 0.5776 0.3547 0.8074 0.0006 0.0086 0.0177 0.9059 5153.350 2511.950 12.08573 12.48402 2201.081 0.000000 Prob.
0.090753 -0.572483 97.48792 -0.249203
0.025490 -2.746755
0.999222 Mean dependent var 0.998768 S.D. dependent var 88.17626 Akaike info
criterion
93300.63 Schwarz criterion -112.8573 F-statistic 1.703427 Prob(F-statistic)
Y = 139.2361608 - 0.05195439459*X1 + 0.1275320853*X2 - 24.294272*X3 + 0.8632825292*X4 + 0.330913843*X5 - 0.07001518918*X6 + 0.002305379405*X7
二、分析
由F=2201.081>F0.05(7,12)=2.91(显著性水平a=0.05),表明模型从整体上看钢材供应量与解释变量之间线性关系显著。 三、检验
计算解释变量之间的简单相关系数。EVIEWS过程如下: 1、 主菜单QUICK-GROUP STATISTICS-CORRRELATION,在对话框中输入X1 X2 X3 X4 X5 X6 X7,结果如下:
X1 X2 X3 X4 X5 X6 X7
X1
X2
X3 0.975474 0.964400 1.000000 0.974809 0.894963 0.913344 0.982943
X4 0.931882 0.994921 0.974809 1.000000 0.959613 0.969105 0.945444
X5 0.826401 0.969686 0.894963 0.959613 1.000000 0.996169 0.827643
X6 0.845837 0.972530 0.913344 0.969105 0.996169 1.000000 0.846079
X7 0.986815 0.931689 0.982943 0.945444 0.827643 0.846079 1.000000
1.000000 0.921956 0.921956 1.000000 0.975474 0.964400 0.931882 0.994921 0.826401 0.969686 0.845837 0.972530 0.986815 0.931689
2、由上表可以看出,解释变量之间存在高度线性相关性。尽管方程整体线性回归拟合较好,但X1 X2 X3 X7变量的参数t值并不显著, X3 X6 系数的符号与经济意义相悖。表明模型确实存在严重的多重共线性。
四、修正
2
计量经济软件Eviews上机指导及演示示例
1、运用OLS方法逐一求Y对各个解释变量的回归。结合经济意义和统计检验选出拟合效果最好的一元线性回归方程。
Variable
CoefficienStd. Error t-Statistic
Prob.
t
C -10123.78 1528.060 -6.625250 0.0000 X1
1.181784
0.116936
10.10629
0.0000 R-squared
0.850171 Mean dependent var 5153.350 Adjusted R-squared 0.841847 S.D. dependent var 2511.950 S.E. of regression 998.9623 Akaike info
16.74595
criterion
Sum squared resid 17962663 Schwarz criterion 16.84552 Log likelihood -165.4595 F-statistic 102.1371 Durbin-Watson stat
0.217842 Prob(F-statistic)
0.000000
Variable
CoefficienStd. Error t-Statistic
Prob.
t
C -618.7199 108.3930 -5.708116 0.0000 X2
0.926212
0.016019
57.82017
0.0000 R-squared
0.994645 Mean dependent var 5153.350 Adjusted R-squared 0.994347 S.D. dependent var 2511.950 S.E. of regression 188.8610 Akaike info
13.41454 criterion
Sum squared resid 642032.9 Schwarz criterion 13.51411 Log likelihood -132.1454 F-statistic 3343.172 Durbin-Watson stat
0.962290 Prob(F-statistic)
0.000000
Variable
CoefficienStd. Error t-Statistic
Prob.
t
C -3770.942 581.6642 -6.483023 0.0000 X3
926.7178
58.38537
15.87243
0.0000 R-squared
0.933317 Mean dependent var 5153.350 Adjusted R-squared 0.929612 S.D. dependent var 2511.950 S.E. of regression 666.4367 Akaike info
15.93641 criterion
Sum squared resid 7994483. Schwarz criterion 16.03598 Log likelihood -157.3641 F-statistic 251.9341 Durbin-Watson stat
0.477559 Prob(F-statistic)
0.000000
Variable
CoefficienStd. Error t-Statistic
Prob.
t
C
-34.32474 91.75324 -0.374098 0.7127
3
计量经济软件Eviews上机指导及演示示例
X4
0.884047
0.014146
62.49381
0.0000
R-squared
0.995412 Mean dependent var 5153.350 Adjusted R-squared 0.995157 S.D. dependent var 2511.950 S.E. of regression 174.8044 Akaike info
13.25985
criterion
Sum squared resid 550018.2 Schwarz criterion 13.35942 Log likelihood -130.5985 F-statistic 3905.476 Durbin-Watson stat
0.824221 Prob(F-statistic) 0.000000
Variable
CoefficienStd. Error t-Statistic
Prob. t
C 2896.350 211.0245 13.72518 0.0000 X5
0.572451
0.036983
15.47892
0.0000 R-squared
0.930123 Mean dependent var 5153.350 Adjusted R-squared 0.926241 S.D. dependent var 2511.950
S.E. of regression 682.2088 Akaike info
15.98319 criterion
Sum squared resid 8377359. Schwarz criterion 16.08276 Log likelihood -157.8319 F-statistic 239.5971 Durbin-Watson stat
0.181794 Prob(F-statistic)
0.000000
Variable
CoefficienStd. Error t-Statistic
Prob.
t
C 2720.664 205.3405 13.24952 0.0000 X6
0.108665
0.006568
16.54535
0.0000 R-squared
0.938303 Mean dependent var 5153.350 Adjusted R-squared 0.934875 S.D. dependent var 2511.950 S.E. of regression 641.0376 Akaike info
15.85869 criterion
Sum squared resid 7396725. Schwarz criterion 15.95827 Log likelihood -156.5869 F-statistic 273.7485 Durbin-Watson stat
0.259927 Prob(F-statistic)
0.000000 Variable
CoefficienStd. Error t-Statistic
Prob.
t
C -9760.099 1317.227 -7.409582 0.0000 X7
0.106826
0.009326
11.45524
0.0000
R-squared
0.879375 Mean dependent var 5153.350 Adjusted R-squared 0.872673 S.D. dependent var 2511.950 S.E. of regression 896.3356 Akaike info
16.52915
criterion
Sum squared resid 14461517 Schwarz criterion 16.62872 Log likelihood
-163.2915 F-statistic
131.2225
4
计量经济软件Eviews上机指导及演示示例
Durbin-Watson stat
0.183657 Prob(F-statistic)
0.000000
经分析在7个一元回归模型中钢材供应量Y对电力产量X4的线性关系强,拟合度好,即:
Y = -34.32474492 + 0.8840472792*X4
(-0.374098) (62.49381)
R=0.995412 S.E.=174.8044,F=3905.476
2、逐步回归。
将其余解释变量逐一代入上式,发现Y与X2、X4线性关系强,拟合度好: Y = -318.260909269 + 0.429200653667*X2 + 0.476623295625*X4
(-3.179263) (3.895858) (4.534407)
2
R=0.997576 S.E.=130.7407, F=3498.403
2
(三)序列相关
目的:1、正确使用EVIEWS
2、能根据计算结果进行序列相关性检验和补救。
实例:国内生产总值和出口总额之间的关系分析(序列相关性检验及补救)
根据某地区1978-1998年国内生产总值与出口总额的数据资料,其中X表示国内生产总值(人民币亿元),Y表示出口总额(人民币亿元)。试建立一元线性回归函数。设模型函数形式为:
Yt12Xtt
obs 1978 1979 1980 1981 1982
X 3624.100 4038.200 4517.800 4860.300 5301.800
Y 134.8000 139.7000 167.6000 211.7000 271.2000
5
计量经济软件Eviews上机指导及演示示例
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
5957.400 7206.700 8989.100 10201.40 11954.50 14922.30 16917.80 18598.40 21622.50 26651.90 34560.50 46670.00 57494.90 66850.50 73142.70 78017.80
367.6000 413.8000 438.3000 580.5000 808.9000 1082.100 1470.000 1766.700 1956.000 2985.800 3827.100 4676.300 5284.800 10421.80 12451.80 15231.70
1、用OLS估计方法求模型的参数估计值
点击NEW-WORKFILE,输入X,Y的数据。
点击QUICK-ESITMATE EQUATION,在对话框中输入Y C X,结果如下:
Variable
CoefficienStd. Error t-Statistic
t
C X
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
-1147.443 0.170052
396.1630 -2.896390 0.011451
14.84990
0.0093 0.0000 Prob.
0.920675 Mean dependent var 3080.390 0.916500 S.D. dependent var 4368.710 1262.402 Akaike info
criterion
30279518 Schwarz criterion -178.7030 F-statistic 0.688670 Prob(F-statistic)
17.30929 220.5196 0.000000 17.20981
2、自相关检验 (1)图示法
由上述OLS计算,可直接得到残差RESID,运用GENR命令生成序列E,则在QUICK菜单中选GRAPH,在图形对话框中输入:E(-1) E,再点击SCATTER DIOGRAM。得结果如下,从图中可以看出残差et呈线性自回归,表明随机误差ut存在自相关。
6
计量经济软件Eviews上机指导及演示示例
400020000E-2000-4000-4000-3000-2000-1000E(-1)010002000
(2)、DW检验
根据OLS计算结果,由:Durbin-Watson stat=0.688670,给定显著性水平a=0.05,查D-W表,n=21,k=2(含常数项),得下限临界值dL=1.22,上限临界值dU=1.42,因为DW统计量为0.688670
DW(1)由DW=0.688670,根据1,计算得=0.6556。
2用GENR分别对X和Y做广义差分。在WORKFILE窗口选择GENR或直接在主窗口输入:
GENR DY=Y-0.6556*Y(-1) GENR DX=X-0.6556*X(-1)
然后再用OLS估计参数。结果为:
DY = -585.3252045 + 0.192825853*DX (-1.752142) (8.851754) 2
R=0.813188 DW=1.345597, F=78.35354
这时可以看出使用广义差分法后,DW值有所提高。
(2)Cochrane-Orcutt迭代法
在QUICK-ESTIMATE EQUATION项,在对话框中输入:Y C X AR(1),OK后得如下结果:
Dependent Variable: Y Method: Least Squares Date: 10/31/05 Time: 18:07 Sample(adjusted): 1979 1998
Included observations: 20 after adjusting endpoints Convergence achieved after 14 iterations
Variable
CoefficienStd. Error t-Statistic
t
7
Prob.
计量经济软件Eviews上机指导及演示示例
C X AR(1)
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Inverted AR Roots
-1876.253 0.198637 0.740777
1975.932 -0.949554 0.049973 0.310956
3.974859 2.382259
0.3556 0.0010 0.0292 3227.670 4428.390 16.84255 16.99191 168.4172 0.000000
0.951955 Mean dependent var 0.946303 S.D. dependent var 1026.178 Akaike info
criterion
17901699 Schwarz criterion -165.4255 F-statistic 1.451436 Prob(F-statistic) .74
此时DW=1.451436>dU=1.42,认为此时无自相关性。
(3)利用对数线性回归修正自相关。用GENR分别对X和Y生成LogX和LogY,命令为:
GENR LY=LOG(Y) GENR LX=LOG(X)
在OLS估计对话框输入: LY C LX计算结果如下:
Variable
CoefficienStd. Error t-Statistic
t
C LX
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
-7.083917 1.466088
0.337892 -20.96504 0.034876
42.03750
0.0000 0.0000 7.043795 1.515819 -0.731905 -0.632427 1767.151 0.000000 Prob.
0.989363 Mean dependent var 0.988803 S.D. dependent var 0.160400 Akaike info
criterion
0.488832 Schwarz criterion 9.685003 F-statistic 1.140571 Prob(F-statistic)
同时考虑Cochrane-Orcutt迭代法。在估计对话框里输入: LY C LX AR(1) 计算结果如下:
Dependent Variable: LY Method: Least Squares Date: 10/31/05 Time: 18:19 Sample(adjusted): 1979 1998
Included observations: 20 after adjusting endpoints Convergence achieved after 5 iterations
Variable
CoefficienStd. Error t-Statistic
t
C LX
-7.088071 1.467507
0.604260 -11.73016 0.061299
23.94022
0.0000 0.0000 Prob.
8
计量经济软件Eviews上机指导及演示示例
AR(1)
0.425084
0.232705
1.826708
0.0854 R-squared
0.990102 Mean dependent var 7.150795 Adjusted R-squared 0.988937 S.D. dependent var 1.471582 S.E. of regression 0.154782 Akaike info
-0.756115 criterion
Sum squared resid 0.407278 Schwarz criterion -0.606756 Log likelihood 10.56115 F-statistic 850.2191 Durbin-Watson stat 1.537282 Prob(F-statistic) 0.000000
Inverted AR Roots
.43
此时DW=1.537282>dU=1.42,可以认为此时已消除自相关性。
9
因篇幅问题不能全部显示,请点此查看更多更全内容