搜索
您的当前位置:首页高中排列组合知识点汇总及典型例题(全)[整理]

高中排列组合知识点汇总及典型例题(全)[整理]

来源:乌哈旅游
一.基本原理1.加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。2.乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。二.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一m列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为An.1.公式:1.Anmnn1n2……nm1n! nm!2. 规定:0!1(1)n!n(n1)!,(n1)n!(n1)! (2) nn![(n1)1]n!(n1)n!n!(n1)!n!;(3)nn11n1111(n1)!(n1)!(n1)!(n1)!n!(n1)!三.组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。nn1……nm1Amn! 1. 公式: Cnm!m!nm!Ammmn 规定:Cn011n 2.组合数性质: CnmCnnm,CnmCnm1Cnm1,Cn0Cn……Cn2n①12;②;③;④rrr1rrrrr1rrrr1 注:CrrCrr1Crr2Cn1CnCr1Cr1Cr2Cn1CnCr2Cr2Cn1CnCn1若CnmCnm则或m1=m2m1+m2n四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。2.解排列、组合题的基本策略(1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。(2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。(4)两种途径:①元素分析法;②位置分析法。3.排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑;(3).相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。(5)、顺序一定,除法处理。先排后除或先定后插解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法;(6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。(7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。(8).数字问题(组成无重复数字的整数)① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数;③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法:3.分组问题:均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。非均匀分组:分步取,得组合数相乘。即组合处理。混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。4.分配问题:定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。随机分配:(不指定到具体位置)即不固定位置但固定人数,先分组再排列,先组合分堆后排,注意平均分堆除以均匀分组组数的阶乘。5.隔板法: 不可分辨的球即相同元素分组问题例1.电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示).例3.6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法?例.有4个男生,3个女生,高矮互不相等,现将他们排成一行,要求从左到右,女生从矮到高排列,有多少种排法?1.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有2.从5名男生和4名女生中选出4人去参加辩论比赛(1)如果4人中男生和女生各选2人,有 种选法; (2)如果男生中的甲与女生中的乙必须在内,有 种选法; (3)如果男生中的甲与女生中的乙至少要有1人在内,有 种选法; (4)如果4人中必须既有男生又有女生,有 种选法1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为(  )

A.40    B.50    C.60    D.70

2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有(  )

A.36种 B.48种 C.72种 D.96种3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有(  )

A.6个 B.9个 C.18个 D.36个

4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有(  )

A.2人或3人 B.3人或4人 C.3人 D.4人

5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有(  )

A.45种 B.36种 C.28种 D.25种

6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有(  

A.24种 B.36种 C.38种 D.108种7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为(  )

8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(  )

A.72 B.96 C.108 D.1449.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有(  )

A.50种 B.60种 C.120种 D.210种

10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)

11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)

12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).

14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 (A)12种 (B)18种 (C)36种 (D)54种15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种 B. 960种 C. 1008种 D. 1108种 14解析:分两类:甲乙排1、2号或6、7号 共有2A22A4A4种方法113甲乙排中间,丙排7号或不排7号,共有4A22(A44A3A3A3)种方法故共有1008种不同的排法排列组合 二项式定理1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情)分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的方法2,排列  排列定义:从n个不同元素中,任取m(m≤n)个元素(被取出的元素各不相同),按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。 排列数定义;从n个不同元素中,任取m(m≤n)个元素的所有排列的个数公式 Am=n3,组合 组合定义 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合 组合数 从n个不同元素中,任取m(m≤n)个元素的所有组合个数 CnmAmnn! 规定0!=1(nm)!Cn=mn! m!(nm)!mnmmmm1性质 Cn=Cn Cn1CnCn 排列组合题型总结一.直接法1 .特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。Eg 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数? Eg 三个女生和五个男生排成一排(1)女生必须全排在一起 有多少种排法( 捆绑法)(2)女生必须全分开 (插空法 须排的元素必须相邻)(3)两端不能排女生(4)两端不能全排女生(5)如果三个女生占前排,五个男生站后排,有多少种不同的排法二.插空法 当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法? 捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种,2,某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方119法有(C29)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体A281来选有C29其余的就是19所学校选28天进行排列)三.阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。五 平均分推问题 eg 6本不同的书按一下方式处理,各有几种分发?(1)平均分成三堆,(2)平均分给甲乙丙三人(3)一堆一本,一堆两本,一对三本(4)甲得一本,乙得两本,丙得三本(一种分组对应一种方案)(5)一人的一本,一人的两本,一人的三本

因篇幅问题不能全部显示,请点此查看更多更全内容

Top