搜索
您的当前位置:首页A Traffic Object Detection System for Road Traffic Measurement and Management Abstract

A Traffic Object Detection System for Road Traffic Measurement and Management Abstract

来源:乌哈旅游
ATrafficObjectDetectionSystemforRoadTraffic

MeasurementandManagement

CarstenDalaff

InstituteforTransportResearch,

GermanAerospaceCenterDLR,Berlin,Germany

Carsten.Dalaff@dlr.de

RalfReulke

InstituteforPhotogrammetry,StuttgartUniversity,Germany

Ralf.Reulke@ifp.uni-stuttgart.de

AxelKroen

ISSPConsult,Stuttgart,Germanykroen@stgt.ssp-consult.de

ThomasKahl

ASISGmbH,Berlin,GermanyThomas.Kahl@asis-it.de

MartinRuhe,AdrianSchischmanow,GeraldSchlotzhauer,WolframTuchscheerer

GermanAerospaceCenterDLR,Berlin,Germany

firstname.lastname@dlr.de

Abstract

OISisanewOpticalInformationSystemforroadtrafficobservationandmanagement.Thecompletesystemarchitecturefromthesensorforautomatictrafficdetectionuptothetrafficlightmanagementforawideareaisdesignedundertherequirementsofanintelligenttransportationsystem.Particularfeaturesofthissystemarethevisionsensorswithintegratedcomputationalandreal-timecapabilities,real-timealgorithmsforimageprocessingandanewapproachfordynamictrafficlightmanagementforasingleintersectionaswellasforawidearea.Thedevelopedreal-timealgorithmsforimageprocessingextracttrafficdataevenatnightandunderbadweatherconditions.Thisapproachopenstheopportunitytoidentifyandspecifyeachtrafficobject,itslocation,itsspeedandotherimportantobjectinformation.Furthermore,thealgorithmsareabletoidentifyaccidents,andnon-motorizedtrafficlikepedestriansandbicyclists.Combiningallthesesingleinformationthesystemcreatesnewderivateandconsolidatedinformation.Thisleadstoanewandmorecompleteviewonthetrafficsituationofanintersection.Onlybythisadynamicandnearreal-timetrafficlightmanagementispossible.Tooptimizeawideareatrafficmanagementitisnecessarytoimprovethemodellingandforecastingoftrafficflow.ThereforetheinformationofthecurrentOrigin-Destination(OD)flowisessentially.TakingthisintoaccountOISalsoincludesanapproachforanonymousvehiclerecognition.Thisapproachisbasedonsingleobjectcharacteristics,orderofobjectsandforecastinformation,whichwillbeobtainedfromintersectiontointersection.

Keywords:Trafficobservation,trafficcontrol,sensornetwork,sensorfusion1Introduction

Trafficobservation,controlandreal-timemanagementisoneofthemajorcomponentswithinfutureintelligenttransportationsystems(ITS).OnecentralpostulationoftheEuropeanGovernmentistheincreaseofroadsafety,sothenumberofkilledpeopleshouldbehalvedtilltheyear2010.Therearenearly41.900roadcasual-tiesandmorethan1.7millionseriouslyinjuredpersonseachyearintheEuropeanUnion(EU).Thiscausesabout45billionEurodirectandapproximately160bil-lionEuroexternalcostsperyear.Daily4.000kmoftrafficcongestionsstressonlytheEuropeanhighways.Thismeans10%ofthecompleteEuropeanhighwaysystem.Theeconomicaldamageistremendous,buttillnowthereisnocommonapproachtocalculatedtherealamount.Sotheofficialnumbersdiffer.ThenecessaryinvestmentsfortheEuropeantransportationfieldwillreachmorethan10%oftheEUgrossna-tionalproduct(GNP).Theneededfinancialcapabilitiesfortransportinfrastructureoftheaccedingcountries(e.g.Poland,Estonia)willincreasethisexpenseenor-

78Image and Vision Computing NZ

mously.Torealizejustthepriorityprojectsinthesecountries,theEUhastobespend91billionEuroupto2015.Takingthisintoaccountitseemseffectivetousepartsofthismoneyforinnovativeapproachesfortrafficmanagementinfutureintelligenttransporta-tionsystems.Havingsuchanintelligenttransportationsystemanincreasedroadsafetycanberealized.Sotheeconomicaldamagecanbereduced.Oneappropri-ateapproachcouldbetheuseofthementionedtrafficobjectdetectionsystemforroadtrafficmeasurementandmanagement.Thissystemsisdifferenttostate-of-the-arttrafficmeasurementequipment,e.g.inductionloops,whichdoesnotsufficeanymorethegrowingde-mandoftransportresearchandtrafficcontrol.TheprojectOIS[1]usesopticalandinformationalen-ablingtechnologiesforanautomatictrafficdatagen-erationwithanimageprocessingapproach.Itsmainpurposeistoacquireandevaluateautonomouslytrafficimagesequencesfromroadsidecameras.Trafficpa-rameterswillbeobtainedfromextractedandcharac-terizedobjectsofthisimagesequences.Tomeettheserequirements,numerousimageprocessingalgorithmshavebeendevelopedsincemorethen20years(e.g.specialissue[2]),withsimpleweb-camerasandmorecomplexsystems(e.g.[3]).

Trafficsceneinformationcanbeusedtooptimizetrafficflowonintersectionsduringbusyperiods,identifystalledvehiclesandaccidents,andisabletoidentifynon-motorizedtrafficlikepedestriansandbicyclists.AdditionalcontributionscanbeobtainedforthedeterminationoftheOrigin-Destination(OD)matrix.TheODmatrixcontainstheinformationwhereandwhenthetrafficparticipantsstartandendtheirtripandwhichroutetheyhavechosen.ODmatrixisonebasicelementforanoptimizedmodellingandforecastoftrafficflow.Theestimatedtrafficflowisnecessaryforadynamicwideareatrafficcontrol,managementandtravelguidance.

Furthermore,therecentadvancesincomputationalhardwarecanprovidehighcomputationalpowerwithfastnetworkingfacilitiesatanaffordableprice.Theavailabilityofspecificsolutionsinthelow-costgeneral-purposerangeallowsspecialimageprocessingandavoidssomebasicbottlenecks.Acoupleoftrafficdatameasurementsystemsalreadyexist.Bestknownistheinductionloop.Inductionloopsareembeddedinthepavement.Theyareabletomeasurethepresentofavehicle,itsspeedandroughclassification.Theseareonlylocalinformationbutforawideareatrafficmanagementabigcoverageoftheareaisneeded.Anotherapproachisbasedontheideathatmovingve-hiclestransmitinformationabouttherepositionandve-locityviamobilecommunication,e.g.GSMtoatrafficmanagementcenter.ThesedataarecalledFloatingCarData(FCD).Togetanoverviewofthetrafficsituationofacompletecityatanytimeahugenumberofve-

Palmerston North, November 2003hicleshastobeequippedwithhardwareandmobilecommunicationunits.Togetreliabledataeveryoneminutethecurrentpositionandvelocityofthevehiclesisneeded.Thiscausesenormouscostsforthemobilecommunication.TheFCDapproachprovidesspatialtrafficinformation,butthespatialandtimeresolutiondoesntfittherequirementofatrafficsignalcontrol.OISasanewandinnovativetrafficobservationsystemthatopenstheopportunitytodeliverallnecessaryinputforalocaltrafficsignalcontrolaswellasforadynamicwideareatrafficmanagementsystem.NextchallengeistheimplementationofOISinawideareacity.

2SystemRequirements

Amodernsystemfortrafficcontrolandreal-timeman-agementhastomeetthefollowingrequirements:•Reliabilityunderallilluminationandweatherconditions

•Workingperiodnon-stop,24hours7daysaweek•completeoverviewovertheintersectionfromatleast20minfrontto20mbehind•workinginreal-time

•real-time(everyhalfsecondacompletedatasetofthetrafficsituation)onanintersection

Thisrequirementsshouldbetakenintoaccountforthedesignofallpartsofthesystem,whichcoversallpro-ceduresandprocessesfromimagedataacquisition,im-ageprocessingandtrafficdataretrievaluptotrafficcontrol.Forrealizinganoperatingsystemfor24hoursandunderdifferentweatherconditionsinfraredcam-erasshouldbeused.Algorithmshadtobedevelopedforaspecialcameraarrangement(withreal-timede-mands)forvehicledetectionandderivingrelevantpa-rametersfortrafficdescriptionandcontrol.

3SystemOverview

Togetacompleteoverviewovertheintersectionfromatleast20minfrontto20mbehinditisnecessarytohavemorethanonecamera.Thenumberofrequiredcamerasdependsontheintersectiongeometryandin-stallationpossibilitiesforthecamerasonhousewallsorlampposts.Thetimesynchronousimagedataacqui-sitionfromoneobservationpointwithdifferentcam-eraswillbedoneinaso-calledcameranode.ThecameranodeispartoftheOIS-philosophyandconsistsofdifferentsensorsasacombinationofVISandIR-cameras.Tofitthereal-timeprocessingrequirement,timeconsumingimageprocessingpartswillbeimple-mentedinaspecialrealtime-unit.Thisapproachisinimplementationatthemomentfortwointersectionsin

79

Berlin,Germanyequippedwithcamera-systems.Thearchitectureofthecompletesystemisshowninthefirstfigure.

Figure1:Systemdesignforthetestbed.Asshowninfig.1thecameranodesarepartofahier-archy,whicharelinkedviaInternetorWirelessLANwiththecomputersystemsontheintersectionandthemanagementcenter.Duetothelimiteddatatransferrateandpossiblefailureofasystemonanintersectionthecameranodeworksindependently.Imageprocess-ingisdecentralizedandwillbedoneinthecameranode,sothatonlyobjectsandobjectfeatureswillbetransmitted.Togetherwitherrorinformationtheobjectdatawillbecollectedonthenextlevelinthehierar-chy.Forsynchronizationpurposestimesignalscanbeincorporatedoveranetworkorfromindependentlyreceivedsignals(likeGPS).Thecameranodeispartofahierarchystartingwithcameranodes,junctions,sub-regions,etc.Thenextso-calledjunctionlevelunifiesallcamerasobservingthesamejunction.Startingwiththeinformationfromthecameralevel,relevantdatasetsarefusedinordertodeterminethesameobjectsindifferentimages.Afterthat,theseobjectsaretrackedaslongastheyarevisible.Sotrafficflowparameters(e.g.velocity,trafficjam,cartracks)canberetrieved.Levelnumber3,theso-calledregionlevel,usestheextractedtrafficflowparametersoutofthelowerlevelandfeedsthisdataintotrafficmodelsinordertocontrolthetraffic(e.g.switchingthetrafficlights).Additionallevelscanbeinserted.Fortestapplicationsthecam-eranodewillgenerateacompresseddatastream.Fortypicalworkingmodeonlyobjectfeaturesinanimageshouldbetransmittedandcollectedinacomputerofthehierarchy.Generally,opticalsensorsystemsinthevisibleandnear-infraredrangeoftheelectromagneticspectrumhavereachedaveryhighqualitystandard,whichmeettherequirementsevenforhigh-levelscien-tificandcommercialtasks,aboveallconcerningthera-diometricandgeometricresolutionanddatarate.Oth-erwisesensorsworkinginthethermalinfraredrange(TIR)arestillaresearchtopicfortrafficapplications.Technologydevelopmentforthenextfewyearswillnotbefocusedonhigherresolutionsorfasterread-outs,becauseformostapplicationstheperformanceofthesesensorsissufficient.Theemphasiswillbeputonsmart,intelligentsensorsystemswithdifferentmeasurement

80parameters(e.g.differentresolutions,differentspec-tralsensitivities)whichareconnectedwithinanetworksimilartotheinternetandbeingabletoconverttheincomingphysicalsignalsnotonlytodigitaldatabuttoprocessthemtouserneededinformation.Therefore,imagefusionaswellasfastandreliablealgorithmsareneededpreferablynearthesensoritself.Real-timeprocessingandprogrammablecircuitswillplayanim-portantrole.

4HardwareConcept

Thehardwareconceptisorientedontherequirements,asdescribedabove.Thesystemhastooperate24hoursand7daysaweekandtoobservethewholejunctionandatleast20mofallrelatedstreets.Toimprovetheopportunitiesforimageacquisitionmorethanonecamerasystemforoneobservationstandpointshouldbeinuse.Suchacameranodefitsthefirstrequirementwithahigh(spatial)resolutioncameraandalowresolutionthermalinfraredcamera.Alsostereoanddistancemeasurementsarepossiblewithtwoidenticalcameras.Thecameranodeisabletoacquiredatafromuptofourcamerasinasynchronizedmode.Thecameranodehasreal-timedataprocessingcapabilitiesandallowssynchronouscaptureofGPSandINS(inertialnavigationsystem)data,whichshouldbeexternalmounted.Duetolimitationsofcameraobservingpositionsandpossibleocclusions(e.g.frombuildings,carsandotherdisturbingobjects)forintersectionobservationmostlymorethanonestandpointforacameranode(camera-system)isnecessary.Thereforecommunicationordatatransmissionbetweencameranodesandthecomputerinthenexthigherhierarchybecomescritical.Toreducedatavolumeinthenetworktherealtimedataprocessingcapabilityofthecamera-nodeisusedtospeedupimageprocessingandtotransmitonlyobjectdata.Forthereal-timeunitahardwareimplementationwaschosen.Largefreeprogrammablelogicgatearrays(FPGA)areavailablenow.Aprogramminglanguageisavailable(VHDL)anddifferentimageprocessingalgorithmsareimplemented.

5DataProcessing

Theprocessingofdatainthesensorwebfollowssuc-cessivesteps.Inthefirststepimagedataaregeneratedandpre-processed.Afterthattheobjectsareextractedoutoftheimages.Inthelaststepalltheobjectfeaturesfromdifferentcameranodeswillbecollected,unifiedandprocessedintotrafficinformation.Thedatapro-cessingisoptimizedtothelogicaldesignofthesystem.Thereareoperationsforthesystemconfiguration,fortheoperationalworkingforthedataminingandvisu-alization.Resultsarenewdataandinformation.Acomplexdatamanagementsystemregulatestheaccess,thetransmission,handlingandtheanalysisofthedata.

Image and Vision Computing NZ

5.1ImageProcessing

Theessentialprocessingstepsaretheelimina-tionofnoiseandsystematicerrors,compres-sion/decompression,higherlevelimageprocessingandspatial(orgeo-)-andtime-referencing.Thelastpointisnecessarytodeterminespaceandtimecoordinatesofobservedobjectsasanessentialfeaturefordatafusion.Mostoftheworkonvehicledetectionorrecognitionwasdoneongroundimages,mainlyaspre-processingbeforetrackingforsurveillanceortrafficapplications[4].Differentapproaches,e.g.findingedges[5]ordeformablemodelforvehicle[?]canbefound.Generally,thereareproblemsinimageprocessingwithcarocclusion[6]andshadows[7].Besidestationaryimageacquisitionfromgroundalsofrommovingplatformsandarialimages[8]areused.Imageprocessingapproacheswillalsobeusedfordetectinglanesandobstaclesbyfusinginformation[9].ImageprocessingforOISwasdescribedindetailin[1].Themainprocessingisaclassicalobjectdetectionandidentificationtask.Followingmajorproblemshavetobesolved-Objectdiscriminationfromaspatialandtimevariablebackground(cross,street,buildings,etc.)-Removingdisturbingstructuresbetweenobjectandcamera,aswellasshadowregionsaroundtheobject-Identificationofcarsinarow,whichareoccludedbyotherThefirstproblemcanbesolvedatleastintwodifferentways:

1.Workingwiththeimagesequences,whicharesubtractedfromtheimagebeforeor2.followingthetimechangingbackground.Forthefirstapproachbackgroundcanbeeliminatedverysimple,butstalledvehiclesareinvisible.Theotherapproachisanon-goingupdateofthebackground.Thisneedsmuchmoreexpense,butallowsadetectionofmovingandalsostalledcars.Asaresultofthisprocedure,backgroundcanbesubtractedfromthecurrentimageandobjectscanbederivedasshowninfig.2.Additionalmorphologicaloperationremovesclutterandcloseobjectsstructures.Therightimageshowsthegreycodedobjectsafterlabelling.

Figure2:Objectdetectioninatrafficscene(left:originalimage,rightprocessedimage.

Theothermajorproblemoccursafterdetectingtheob-ject.Todeterminesizeandshape,disturbingeffects

Palmerston North, November 2003likeshadowshavetoberemoved.Astraightforwardwayistheanalysisofgreyandcolorvalues,aswellastexturewithinthefoundobjectboundaries.

5.2Dataandobjectfusion

Toensureanoperatingsystem24hoursadayevenun-derbadweatherconditions,e.g.rain,fog,andatnightthefusionofavisibleandanIRsensorisapromisingapproach.Thefusionispossibleondifferentstagesofinformationprocessing:

-datalevel(e.g.imagedatafromdifferentcameras)-objectlevel(objectsextractedfromtheimagedata)

-informationlevel.

Imagematchingandregistrationasonepartofthedatafusionisaprocedurethatdeterminesthebestspatialfitbetweentwoormoreimagesacquiredatthesametimeanddepictingthesamescene,byidenticalordifferentsensors.Tofusethedifferentimagesand/orobjectdataasynchronizationoftimeisnecessary.Timesynchronizationcanberealizedbyinternalclocks(e.g.computer)orexternaltimeinformation(e.g.GPS).FortheapplicationofOISwemergeimagesoncameranodelevelandfusethepositioninformationandobjectfeaturesonjunctionorregionlevel.Theobjectinformationarefedinfromdifferentcameranodes.Bothproceduresshouldbeexplainedmoredetailed.Fusionondatalevel:Tofittherequirementfor24-hourobservations,typicalCCD-camerasfailbecauseoflimitedilluminationoftheobjects.Carheadlightsandrearlampsseemsnotbesufficient.Toovercomethisproblemthecarself-radiation,whichhasamaximuminthethermalspectralregion(TIR),canbeused.Thereareabunchofdifferentdetectorssensitiveinthisspectralrange.Mostofthesensorsareexpensiveandneedsadditionalcooler.Recentdevelopmentsshow,thatbolometerarraysareacandidateforcheaperanduncooleddetectorarrays.Therefore,acameradevelopmentwasstarted,whichgivesfullaccesstothesensor,control,datacorrectionanddataflow.Firstexperimentsweredonewithacommercialsystem.Anexampleofthedataandthefusionofbothondatalevelisshowninfig.3.

Observationwasdoneonlateafternoon.TheleftimageisatypicalCCD-image.Contrastbecomessmaller,onlyreflectionsfromsunglittersoncarroofsarevisi-ble.Themiddleimagewastakenfromabolometersen-sor.Thewholeintersectionandthestreetarevisible.Therightimageisthefusionofboth.Forvisualiza-tiongreylevelimagewasputinthegreenchannelandtheTIRimageinthered.MergingthevisibleimageandtheIR-imageaaffinetransformationwasused.To

81

fusedatafromdifferentsourcesisobvious,butneedsspatialandtimesynchronization,becauseofdifferentimagingsystemandobservationconditions.Forthisexample,thesynchronizationtaskisbasedonmanualprocedures,likefindingequivalentpointsinbothIRandVISimagesandthecalculationofthenecessarytransformation.Especiallytheautomaticspatialsyn-chronizationisaresearchtopic.Alltheseoperationsaredoneineachcameranode.AnotheradvantageofTIRimagesshowsthefollowingimagepair,whichwastakenfromthesameobservationpoint,butatdaytime.

Figure3:SensorfusionofVISanIRimages(I).

Figure4:SensorfusionofVISanIRimages(II).Fig.4showsanexampleoffusingRGBandTIRim-agesatdaytime.AftercoregistrationtheIR-imagetotheRGB-imageandapplyingaffinetransform,adirectcomparisonispossible.Indifferencetofigure1theinfraredimagewasfitdirectlyintothegreylevelim-age(acolorseparationoftheRGB-image).TheRGBimagehasamuchmorehigherresolutionthantheTIR-image(720x576pixel).Spatialandtruecolorobjectdatacanbederivedfromthisimage.TheTIR-imagehasasmallerresolution(320x240pixel).Thecom-binationofbothimagesgivesamorecomplexresult,becauseofthethermalfeatures,whichcanbeobservedontheenginebonnetandasreflectedradiationfromunderthecar.Thesearealsonewfeaturesforobjectdetectionanddescriptionwithintheimage-processingtask.ObjectDataFusion:Occludedregionscanonlybeanalyzedwithadditionalviewsontheseobjects.Be-causecameranodesalwaystransmitobjectinforma-tion,adatafusionprocessonobjectlevelisneces-sary.Theobjectlistfromdifferentcameranodeshastobeanalyzedandunified.Objectfeatureslikeposition,size,andshapevaryfromeachviewangle.Thereforethedifferentobjectfeaturesfromdifferentperspectiveshavetobecompared.Theresultofthisoperationisonetrafficobjectwithanexactposition,sizeandshape,etc.Theassumptionsforthisoperationaretimeandspatialsynchronizedimagedata.Thesequentialprocessingofthislistallowsthederivationofmoredetailedinfor-mation,e.g.trackofthetrafficparticipants,removingerroneousobjects,etc.

825.3DataAcquisitionandGeoreferencing

Transformationfromimagetoworldcoordinatesisanessentialneedinordertocalculatemetricbasedtrafficdata.Standardphotogrammetricproceduresforthetransformationofcoordinateswithinmonocularimagesareused.Basicassumptionsarewelldistributedandaccuratemeasuredgroundcontrolpoints(GCP)inobjectandimagespaceaswellasanexactcameracalibration.TheGCPsarecalculatedviaDGPSwithinWGS84andUTM-projection.Thecalculatedcameracalibrationparameters(interiorandexteriororientation)andimagecoordinatesareinputforthetransformationequations.DuetomonocularimageaccusationtheobjectorvehiclepositionshavetobeprojectedonaXY-planeinobjectspace.Thevehiclepositionsprojectedonthatplanedependonthecameradistance,thecameradeclinationandthepositionofthepointwithinthevehiclerepresentingitsposition.Oncethecameracalibrationissetthevehiclepositionscanbetransformedtoworldcoordinateswithinimagesequencesuntilthecamerapositionchanges.Additionally,intersectiongeometryforexamplelanesetc...canbetransformedfromimageintoobjectspace.

5.4CalculationofTrafficCharacteristics

Thefollowingfigure5showsthegeneraltrafficchar-acteristicscalculationprocess.

Figure5:Generaltrafficcharacteristicscalculationprocess.

Theimageprocessing(notshownabove)cyclicallydeliverstheparametersofallidentifiedtrafficobjectssuchascars,trucks,cyclistsandpedestriansintrafficobjectlists(TOLists),containingtype,size,speed,direction,geographiclocationetc.oftheobjectsforacertainsampletime.Astorageprocedure(TOstorage)writesthisrawtrafficdataintoadatabaseforfurtherprocessing.Atrackingprocedure(TOTracking)markstrafficobjectsappearinginconsecutivetimesamplesbyanuniqueobjectidentification.Thus,trafficobjectscanbepursuedthroughouttheobservedtrafficarea.ThetrackedtrafficobjectsandtheirparametersarestoredintheTrackedTODataareaofthedata

Image and Vision Computing NZ

base.Usingthisdata,atheTrackingCharacteristicsCalculationmodulecomputestrafficcharacteristics,e.g.trafficdensityorflowrates.Tocomputethetrafficdensitythenumberofmotorvehiclesonacertainroadsegmentisnecessary.Usingtheirgeographicalcoordinatesanddirectionallmotorvehiclesmovingalongaroadsegmentareselectedformthedatabase.Bysimplecountingthenumberofthisvehiclesandscalingtheirnumbertoaonekilometersegmentthetrafficdensitycanbeobtained.Flowratescanbedeterminedbycountingthenumberofcarscrossingadefinedtraversesection.Basedonthetrafficobjectparametersetoveranumberofsampletimesandusingthetrackinginformation,thenumberofvehiclescrossingthesectioniscountedandatrafficflowmeasureinvehiclesperhourorsocanbeobtained.

6AnNetworkAdaptiveControl

andHighDynamic

Thevideobasedtrafficsensordevelopedinthisprojectcreatespossibilitiesfornewconceptsoftrafficcontrolforintersectionsandwideareanetworks.Thisapproachalsoincludesthedevelopmentofanewdynamicandadaptivetrafficcontrolmodelsfortrafficlights.State-of-the-artintrafficobservationistheinductionloop.Inductionloopsareembeddedinthepavementandregisterabout1·2m.Thiskindofsensorisabletomeasurethepresentofavehicle,itsspeedandroughclassification.Inanextprocessingstepitispossibletocalculatetimeintervalsbetweenvehicles.Thisdataisneededtocontroltrafficlightsignalsonintersections.Forarealdynamicanddemandbasedtrafficsignallightcontrol,youwouldneedthedataofnumerousinductionloopsononesingleintersection.Thisisneitherefficientnorrealizable.OISsensorweboffersanewkindoftrafficdata/information.Itisbasedonsocalledtraffic-actuatedsignals.Thismeans,thesystemisdetectinginformationaboutthereal-timetrafficsituationonanintersectionautomatically.Forexamplethelengthofthequeueforalldifferentlanes,thetrafficflowattheintersection,thedensityoftrafficandthecurrentvelocityofeachvehicle.TheOISsensorwebautomaticallyprocessesdata-position,speedvectorsofeachvehicle,queuelengthaswellasotherrelevantfeatures.Thisleadstoacompleteandreal-timeoverviewatleast20mbeforeandbehindanintersection.Basedonthisnewqualityofdata,newapproachesaredevelopedtocontroltrafficlightsignalsondynamicdemand.Atthemomentmostoftrafficlightsarecontrolledbytwodifferentways:1.controlbyfix-timesignals2.controlbysocalledactuatedsignalsFix-timesignalsmeans:greenandredtimeisfixedoverthetimeandindependentoftheactualsituationontheintersection.Actuatedsignalsmeans:anumberoffix-timesignalsareusedfordifferentdemandsandsituations.Atthistimetherearenearly

Palmerston North, November 2003nosensorwebsormeasurementsystemsavailable,thatareabletomeasureeachobjectonaintersectionandthatprovidesallnecessaryspatialinformationforarealdynamictrafficcontrolsystem.OISisasystemthatisabletoacquirefeatureslikesize,shapeandotherobjectfeaturestoclassifyandidentifytrafficobjects.Summarizingthis,OISgivesacompletedatainformation(overview)overawholeintersection.TheprojectisfundedbytheGermangovernment(FederalMinistryofEducationandResearch,registrationnumber:03WKJ02B).

References

[1]R.Reulke,A.Bœrner,H.Hetzheim,A.Schis-chmanow,andH.Venus.Asensorwebforroad-trafficobservation.InImageandVisionComput-ing,NewZealand2002,pages293–298,2002.[2]A.BroggiandE.D.Dickmanns.Applicationsof

computervisiontointelligentvehicles.ImageandVisionComputing,18(5):365–366,April2000.[3]F.Pedersini,A.Sarti,andS.Tubaro.Multi-cameraparametertracking.IEEProceedings-Vision,ImageandSignalProcessing,148(1):70–77,February2001.[4]M.Betke,E.Haritaoglu,andL.S.Davis.Real-timemultiplevehicledetectionandtrackingfromamovingvehicle.MachineVisionandApplications,12(2):69–83,2000.[5]J.Canny.Acomputationalapproachtoedge

detection.PAMI,8:679–698,1986.[6]I.Ikeda,S.Ohnaka,andM.Mizoguchi.Traf-ficmeasurementwitharoadsidevisionsystem-individualtrackingofoverlappedvehicles.InProceedingsofthe13thInternationalConferenceonPatternRecognition,pages859–864,1996.[7]G.S.K.Fung,NelsonH.C.Yung,GranthamK.H.

Pang,andAndrewH.S.Lai.Effectivemovingcastshadowdetectionformonocularcolrtrafficimagesequences.OpticalEngineering,41:1425–1440,June2002.[8]R.Chellappa.Anintegratedsystemforsitemodel

supportedmonitoringoftransportationactivitiesinaerialimages.InProceedingsofthe1996ARPAImageUnderstandingWorkshop,pages275–304,1996.[9]M.BeauvaisandS.Lakshmanan.Clark:a

heterogeneoussensorfusionmethodforfindinglanesandobstacles.ImageandVisionComputing,18(5):397–4,April2000.

83

因篇幅问题不能全部显示,请点此查看更多更全内容

Top