ContentslistsavailableatScienceDirect
BiosensorsandBioelectronics
journalhomepage:www.elsevier.com/locate/bios
Quantumdotsencapsulatedwithamphiphilicalginateasbioprobeforfastscreeninganti-denguevirusagents
Chung-HaoWang1,Yi-ShiouHsu1,Ching-AnPeng∗
DepartmentofChemicalEngineering,NationalTaiwanUniversity,Taipei,Taiwan
articleinfoabstract
Theincreasingthreatsofviraldiseaseshavegainedworldwideattentioninrecentyears.Quiteafewinfec-tiousdiseasesarestilllackingeffectivepreventionortreatment.Thepaceofdevelopingantiviralagentscouldbeexpeditedbytheavailabilityofquickandefficientdrugscreeningplatforms.Inthisstudy,quan-tumdot(QD),anemergingprobeforbiologicalimagingandmedicaldiagnostics,wasemployedtoformcomplexeswithvirusandusedasfluorescentimagingprobesforexploringpotentialantiviraltherapeu-tics.InorganicCdSe/ZnSQDssynthesizedinorganicphasewereencapsulatedbyamphiphilicalginatetoattainbiocompatiblewater-solubleQDsviaphasetransfer.Virusemployedforthisstudywasdengueviruswhichisanotoriousoneintropicalandsubtropicalregionsoftheworld.ToconstructaQD–virusimagingmodalitycapableofprovidingmeaningfulinformation,preservationofviralinfectivityaftertaggingviruswithQDsisofutmostimportance.InordertoformcolloidalcomplexesofQD–virus,electrostaticrepulsionforcegeneratedfrombothnegativelychargedvirusandQDswasneutralizedbyvariousconcentrationsofcationicpolybrene.ResultsshowedthatBHK-21cellsinfectedwithdenguevirusesincorporatedwithQDsexhibitedbrightfluorescenceintracellularlywithin30min.TodemonstratethepotencyofQD–viruscomplexesasbioprobesforscreeningantiviralagents,BHK-21cellswereincubatedforonehourwithallo-phycocyaninpurifiedfromblue-greenalgaeandtheninfectedwithQD–viruscomplexes.Basedonthedevelopedcell-basedimagingassay,allophycocyaninwithconcentrationof125g/mLledtoextremelyweakintracellularfluorescencepost-infectionofQD–viruscomplexesfor30min.Thatis,theefficacyofanti-dengueviralactivityofthealgaeextractwasclearlyillustratedbytheinorganic–organichybridplatformconstructedincurrentstudy.
©2008ElsevierB.V.Allrightsreserved.
Articlehistory:
Received16April2008
Receivedinrevisedform1August2008Accepted4August2008
Availableonline13August2008Keywords:
QuantumdotsDenguevirus
AmphiphilicalginateDrugscreeningAllophycocyaninPolybrene
1.Introduction
Unlikebacteria-basedinfectionwhichcanbecontrolledbyantibiotics,virusesfullyrelyingonhostcellsfortheirreplicationarenotsoreadilydealtwith.Theemergenceandspreadofviraldiseasesworldwide,particularlyHIV/AIDS,outbreaksofsevereacuterespi-ratorysyndrome(SARS)virus,andthescaresofpandemicavianinfluenzavirusseriouslyraisetheconcernthatanyvirusstrainhasthepotentialevolvingintoalife-threateningpathogen.Inthisregard,developingfastandefficientscreeningtechnologyhasitsmeritsofidentifyingpotentialdrugsagainstviraldiseasesthatstilllackofeffectivepreventionortreatment.Denguevirusisthetypicalonerepresentinganimportantemergingmosquitobornedisease
∗Correspondingauthorat:DepartmentofChemicalEngineering,NationalTaiwanUniversity,No.1,Section4,RooseveltRoad,Taipei106,Taiwan,ROC.Tel.:+886233663063;fax:+886223623040.
E-mailaddress:chinganpeng@ntu.edu.tw(C.-A.Peng).1
Theseauthorscontributedequallytothiswork.0956-5663/$–seefrontmatter©2008ElsevierB.V.Allrightsreserved.doi:10.1016/j.bios.2008.08.009
worldwide.Ithasspreadfrombeingendemicinjust9countriesin1970to100countriesin2002,accordingtotheworldhealthreport(http://www.who.int/whr/2002/en).Apparently,globalpopulationgrowth,urbanization,andfrequentmoderntransportationhavecontributedtotheincreasedincidenceandgeographicspreadofdengueviruses.Thesediseasesoccurintropicalandsubtropicalareasoftheworld,where2.5billionpeopleareestimatedatriskfordenguevirusoutbreaks(GublerandClark,1995).Eachyear,tensofmillionsofcasesofdenguefeveroccur,particularlyinAsia,Africa,SouthAmerica,andPacific.Thefatalityrateisabout5%andthereisnovaccineavailablefordenguevirus.Controloftheprimaryvec-tor,Aedesaegypti,istheonlymethodcurrentlyemployedtopreventdenguevirusepidemics.
Thepaceofexploitingantiviralagentscouldbeexpeditedbytheavailabilityofquickandefficienthigh-throughputanti-dengueviralagentscreeningassays.Recently,acell-basedimmunofluores-cenceimagingtechnologyhasbeendevelopedtoidentifypotentialanti-dengueviraltherapeuticagents(ChuandYang,2007).Theyreportedthatinhibitorsofthec-Srcproteinkinasehindertheassemblyofdenguevirionsandmaythereforebeaneffective
C.-H.Wangetal./BiosensorsandBioelectronics24(2008)1012–10191013
therapy.Itwasanticipatedthatthenewassaycanbeusefulforidentifyingsmallmoleculeinhibitorsofdenguevirusinfectionandreplicationaswellasimprovingunderstandingofdenguevirus–hostinteraction.Althoughthedevelopedassayhasitsmer-its,theprocessofscreeningantiviralagentswasnotquickenoughbecausetheVerocellcultureplateaftertheadditionofdenguevirusandthenspecificproteinkinaseinhibitorhastobeincubatedfor3dayspriortotheperformanceofimmunofluorescencestain-ing.Moreover,anti-dengueEproteinmonoclonalantibodyandthesecondaryantibodyconjugatedwithfluorescentdyeFITChavetobeusedforlabelingthecellmonolayer.Thisisnodoubtatime-consumingandexpensiveprocess.Fluorescentdyehasbeenwidelyusedforvirallabelingexperimentsandimprovedourunderstand-ingofviralinfectionprocess.However,fluorophoresarenotoriousforphotobleachingandspectraloverlaps,andthereforecouldaffectthefluorescenceimagingqualityofdye-labeledvirussincetheobservationtimerangedfromonetotensecondsbeforephoto-bleachoccurs.Obviously,ahighfluorescencequantumyieldandalargenumberoffluorescentphotocyclesbeforephotobleachofthedyemoleculeoccursaretheprerequisitesforsuccessfullydetectingdye-labeledviralparticles.Moreover,afterlabelingviralparticleswithfluorescentdyes,thenumberofvirusesthatcaninfectacellmostlikelywillbeseverelydiminished.
Inviewofthedrawbacksofusingfluorescentdyes(ChanandNie,1998;Paraketal.,2005),colloidalsemiconductorquantumdots(QDs)wereinvestigatedinthisstudytoexplorethepotencyoftaggingQDstoviralparticles.Thankstoexcellentphotostabil-ity,broadadsorptionspectra,andnarrowemissionspectra,QDshaveattractedgreatinterestsinmanyareasofresearch,frommolecularandcellularbiologytomolecularimagingandmedicaldiagnostics(Michaletetal.,2005andreferencestherein).Tri-n-octylphosphineoxide(TOPO)-coatedQDsuspendedinorganicsolventwasfirstconvertedintowater-solubleQDemployingsyn-thesizedamphiphilicalginatesurfactants.ComplexesbetweenQDsanddenguevirus,bothpossessinganetnegativesurfacecharge,willbeformedbycolloidalclustering,facilitatedbypositivelychargedpolycationiccompound–polybrene.InordertotestifQD–viruscomplexescanbeharnessedasdiagnosticprobesforfastscreeningpotentialanti-dengueviraldrugcandidates,allo-phycocyanin(protein-boundpigment)purifiedfromablue-greenmicroalgaSpirulinaplatensiswasusedasthemodelagentsinceithasbeenreportedtoexhibitanti-EV71activities(Shihetal.,2003).OurresultsshowedthattheintensityofgreenQDimageswithinBHK-21cellswasdecreasedalongwiththedosageincreaseofallophycocyaninupto125g/mLprovidedonehourpriortotheadditionofQD–viruscomplexes.Itwasclearlyillustratedthatallo-phycocyaninpossessesanti-dengueviralactivityandthiscanbedeterminedwithinhalfanhouraftertargetcellsincubatedwithdenguevirusesincorporatedwithamphiphilicalginatecoatedQDinthepresenceof50g/mLpolybrene.
2.Materialsandmethods2.1.SynthesisofCdSe/ZnSQDs
TopreparesemiconductorCdSe/ZnSQDs,amixtureof25.7mgofcadmiumoxide(CdO,Sigma,USA),3.88gofTri-n-octylphosphineoxide(TOPO,Sigma),and2.41gofhexadecylamine(HDA,Acros,Belgium)washeatedto300–320◦Cunderadrynitrogenatmo-sphere.AftertheformationofaCdO–HDAcomplexasindicatedbythechangeofcolorfromreddishtocolorless,thetemperatureofthesolutionwascooleddownto260◦Candwaitedforinjection.Astocksolutionwith31.58mgofseleniumpowder(Se,Sigma–Aldrich)dissolvedin5mLoftri-n-butylphosphine(TBP,Showa,Japan)was
quicklyinjectedintothesolutionunderrigorousstirringtonucleateCdSenanocrystals.Afterinjection,thecoresolutionwasgrownat260◦Cforapproximately5swhenthecolorofthemixtureturnedfromcolorlesstoslightlyred.Thetemperaturewasthencooledto200◦Cforshellgrowth.Theshellsolutioncontaining379.4mgzincstearate(J.T.Baker,Netherlands)and12.8mgsulfurpowder(S,Sigma)dissolvedin5mLofTBPwasheatedto110◦Cfor30minandthencooledtoroomtemperatureforinjection.Theshellsolu-tionwasaddeddropwiseintothecoresolutionunderstirringoveraperiodof15min.Afteradditionofshellsolution,thecore-shellsolutionwascooleddownto120◦Ctoannealfor2h.Thecore-shellsolutionwascooledtoroomtemperatureafterwards.TheCdSe/ZnSnanocrystalswereprecipitatedbyanhydrousmethanol(Tedia,USA)andthenstoredinchloroform(Tedia)forfurtheruse.
2.2.Preparationofamphiphilicalginatesurfactant
Sodiumalginatesolution(Sigma)mixedwith2wt.%sodiumperiodate(Acros)inadark,coldchamber(4◦C)for24h.Exclu-sionoflightwasessentialforthepreventionofsidereaction.Toobtainoxidized2,3-dialdehydicalginate,thereactionmixturewasextensivelydialyzedagainstdistilledwaterandsubsequentlyfreeze-dried.Twomilligramsofoctylamine(Acros)dissolvedin8mLmethanolwasreactedwith0.276mg2,3-dialdehydicalginatedissolvedin10mLphosphatebuffersaline(PBS)solu-tioncontaining0.1gsodiumcyanoborohydride(NaCNBH3,Acros).Thereductiveaminationproceededfor12hwithrigorousstir-ringatroomtemperature.Thereactionmixturewasdialyzedandsubsequentlyfreeze-driedtoobtaintheamphiphilicalginatesurfactant.
2.3.EncapsulationofQDswithamphiphilicalginate
0.4mgofCdSe/ZnSsuspendedin5mLofchloroformwasaddedwith2mgofalginatesurfactant.Themixturewassonicatedinabathfor10min,andthenthechloroformwasremovedbyarotaryevaporator(Eyela,Japan)atroomtemperature.Attheendoftheoperation,themixturewasresuspendedwithPBSsolutionandfil-teredthrougha0.22-msyringefilter(Millipore,USA)toremoveaggregates.Thefiltratewasfreeze-driedtoobtaintheamphiphilicalginatecoatedquantumdotsinthepowderform.2.4.Particlesizeanalysis
QDsencapsulatedbyamphiphilicalginate(AA-QDs)werethor-oughlydispersedinaqueoussolutionbyasonicator(200W,40kHz;BransonUltrasonicsCorporation,CT,USA)for10minandthenpassedthrougha0.22-msyringefiltertocollectnon-aggregatedAA-QDswhichwereanalyzedformeanparticlesizeandsizedistri-butionbythedynamiclightscattering(ZetasizerNanoZS,MalvernInstruments,UK)equippedwithadiode-pumpedsolid-statelaseroperatingat633nmwavelengthasalightsource.Theparticlesizedistributionandtheaverageparticlediameterwereobtainedfromthecorrelationfunctionbyaregularizationmethodincludedinthedataanalysissoftwarepackage(DispersionTechnologySoftware5.02,MalvernInstruments,UK).2.5.Zetapotentialmeasurement
ThesurfaceelectricchargeofAA-QDs,denguevirus,andQD–viruscomplexeswasmeasuredseparatelybythezetapotentiometer(ZetasizerNano-ZS,MalvernInstruments,UK)viadeterminingtheelectrophoreticmobility.Theelectrophoreticmobilityisobtainedbyharnessingmicroelectrophoresistechnique
1014C.-H.Wangetal./BiosensorsandBioelectronics24(2008)1012–1019
onthesampletomeasurethevelocityoftheparticlesusinglaserDopplervelocimetry.Theisoelectricpoint(pI)ofallophycocyaninwasdeterminedtobethepHatwhichitcarriesnonetelectriccharge(i.e.,zetapotentialequalstozero).
2.6.AbsorptionandphotoluminescencespectraofAA-QDs
AUV–visspectrophotometer(JascoModelV-570,Japan)andaphotoluminescencespectrophotometer(JascoModelFP-6000,Japan)wereusedtocharacterizeAA-QDs.UV–visabsorptionspec-trumofQDswasscannedinthewavelengthrangeof300–700nm.Thephotoluminescenceoftheparticleswasmeasuredinthewave-lengthrangeof400–700nm.Thespectrawereobtainedwiththedatapitchat5nmandthescanningspeedof500nmpermin.Allsampleswereplacedinquartzcuvettes(1-cmpathlength)andtheopticalmeasurementswerecarriedoutusingPBSasthereferenceforAA-QDs.
Fig.1.(a)SchematicdrawingofCdSe/ZnSquantumdotsencapsulatedbyamphiphilicalginatesurfactant;(b)particlesizedistributionofAA-QDsbydynamiclightscattering.Aftersonication,thedistributionwasnarroweddowntotherangebetween18.1and28.7nmwithameandiameterof23.1nm.
2.7.Transmissionelectronmicroscopy(TEM)analysis
TEMspecimensweremadebyevaporatingonedropofquantumdots/viruscomplexessolutiononcarbon-coatedcoppergrids.TEMmicrographsweretakenbyatransmissionelectronmicroscope(JEM-1230,JOEL,Tokyo,Japan)operatingat100kV.Phospho-tungsticacid(Sigma)wasusedasthenegativestainreagent.2.8.BHK-21cellsanddengueviruses
BHK-21cellsweremaintainedat37◦CinDulbecco’smodifiedEagle’smedium(DMEM;HyClone,UT,USA),supplementedwith10%fetalbovineserum(FBS;HyClone).Denguevirusserotype-2strainPL046waspropagatedinmosquitoC6/36celllinemaintainedat30oCinDMEM,supplementedwith10%FBS,
Fig.2.(a)PhotoluminescenceandUV–visspectraofAA-QDs.UV–visabsorptionspectrumofAA-QDswasdetectedintherangeof300–700nm.Thephotolumi-nescenceofAA-QDswasmeasuredintherangeof400–700nmwithanexcitationwavelengthof390nm.Thephotoluminescencewiththeemissionwavelengthpeakedat534nmindicatingbrightgreenfluorescenceofAA-QDsinaqueoussolu-tionshownintheinsetphotograph;(b)TEMimageoftheQD–viruscomplexesformedinthecationicpolybrenesolution.Thelight-colorparticleswiththesizearound40–50nmaredenguevirus(indicatedbyarrow).Thedark-colorparticlestaggedontheviralparticles(indicatedbyarrowhead)areAA-QDs(about10–15nm).(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)
C.-H.Wangetal./BiosensorsandBioelectronics24(2008)1012–10191015
Fig.3.PhotomicrographicalimagesofBHK-21cellsexposedseparatelytoAA-QDswithandwithoutpolybreneforvariousperiodsoftime.(a)–(c)ImagesofBHK-21cellsincubatedwithQDswithoutpolybrenefor30,60,and120min,respectively.QDwasnotdetectedintracellularlyunderfluorescentconfocalmicroscopyuntil120minpost-incubation;(d)–(f)imagesofBHK-21cellsincubatedwithQDsinthepresenceof10g/mLpolybrene.QDwasnotdetectedintracellularlyunderfluorescentconfocalmicroscopyuntil60minpost-incubation.(g)–(i)ImagesofBHK-21cellsincubatedwithQDsinthepresenceof50g/mLpolybrene.QDwasclearlydetectedintracellularlyunderfluorescentconfocalmicroscopyafter30minpost-incubation.Thenormalizedfluorescenceintensitiesperselectedcellareaof(b)–(i)basedonthefluorescenceintensityperselectedcellareaof(a)are1.02,1.06,0.94,2.55,3.65,1.70,3.93,and5.20,respectively.Scalebar=25m.
1016C.-H.Wangetal./BiosensorsandBioelectronics24(2008)1012–1019
penicillin(200U/mL)andstreptomycin(100g/mL).Denguevirus-containingsupernatantwasfirstcentrifugedat10,000rpm,andthenultracentrifugedat100,000×gat4◦Cfor3htopurifydenguevirions.ThetiteroftheviruswasevaluatedusingBHK21cellsbytheplaqueassay(Liuetal.,1997).
2.9.InhibitionofQD–virusinfectionbyalgaeextracts
AA-QDssuspendedin1mLDMEMmediumwereaddedinto1mLdenguevirus-containingmediumwithmultiplic-ityofinfection(MOI)of0.1,0.5,and1.0,respectively.Aftergentleshakingofthemixedmedia,polybrene(1,5-dimethyl-1,5-diazaundecamethylenepolymethobromide,MW=5000–10,000,Sigma–Aldrich)stocksolutionwaspipettedintothemixturetoreachafinalconcentrationof10and50g/mL,respectively.Then,themixedsolutionwasincubatedat4◦Cfor1htopreventdenguevirusfromlosinginfectivity.AftertheprocessofincorporatingviruswithAA-QDs,5×104BHK-21cellsintheexponentialgrowthphasewerereplacedwiththeQD–virus-containingmedium.Aftertreat-ingBHK-21cellswiththeQD–viruscomplexesforvariousperiodsoftime(30,60,and120min),thecellculturedishwaswashedwithPBSthreetimesandobservedunderSpectralConfocalandMultiphotonSystem(LeicaTCSSP5,Wetzlar,Germany)withthesettingsofobjectivelens63×,pinhole1.0,smartgain380mV,and
Fig.4.PhotomicrographicalimagesofBHK-21cellsexposedseparatelytoQD–viruscomplexesofdifferentMOIswith10g/mLpolybreneforvariousperiodsoftime.(a)–(c)ImagesofBHK-21cellsincubatedwithQD–viruscomplexesofMOIbeing0.1for30,60,and120min,respectively;(d)–(f)imagesofBHK-21cellsincubatedwithQD–viruscomplexesofMOIbeing0.5for30,60,and120min,respectively;(g)sixsequentialz-sectionimagesofselectedinfectedcellsweretakenbyaconfocalmicroscope,whichrevealingtheQD–viruscomplexeswereindeedinternalizedintoBHK-21cellsratherthanabsorbedoncellsurface.Thenormalizedfluorescenceintensitiesperselectedcellareaof(b)–(f)basedonthefluorescenceintensityperselectedcellareaof(a)are1.00,1.33,1.19,2.56,and3.54,respectively.Scalebar=25m.
C.-H.Wangetal./BiosensorsandBioelectronics24(2008)1012–10191017
405-nmlaserND3.ThefluorescenceintensityofQDsrevealedwithintheobservedBHK-21cellswasquantitativelyanalyzedbytheMetaMorph®imagingsoftware(Version7.5,MolecularDevices,USA).
InordertotestifQD–viruscomplexescanbeharnessedasdiag-nosticprobesforfastscreeningpotentialanti-denguetherapeuticagents.Allophycocyanin(FarEastBio-TecCo.,Taipei,Taiwan)withconcentrationof6.25,31.25,and125g/mLwasusedtotreatBHK-21cellsforonehour,andthenrinsedawaybyPBSsolutionforthreetimes.Afterallophycocyanintreatment,QD–viruscomplexeswereaddedseparatelyfor30,60,and120mintoexaminetheefficacyofdrugscreenassayproposedinthisstudy.3.Resultsanddiscussion
3.1.QDsencapsulatedwithamphiphilicalginate
ColloidalnanocrystalQDsconsistingofaninorganiccore/shellstructure(e.g.,CdSe/ZnS)surroundedbyalayeroforganicligands(i.e.,TOPO)canbeconvertedintohydrophilicnanoparticlesbysev-eralapproaches(Bruchezetal.,1998;ChanandNie,1998;Dubertretetal.,2002;Mulderetal.,2006;Pinaudetal.,2004;Zhelevetal.,2006).Thecommonlyusedstrategyisbasedontheexchangeoftheoriginalorganiclayerwithhydrophilicligands,howeverthephysicalproperties(i.e.,quantumyield)areusuallydeterioratedthroughsuchsurfacemodification.Inthisstudy,wedemonstratedthefirsttimethatamphiphilicalginatecanencapsulateCdSe/ZnSbyintercalatingalginatesurfactant’shydrophobicpendantmoi-eties(i.e.,octylchains)intothehydrophobicsurfactantlayer(i.e.,TOPO)ontheQDsurface,therebyresultinginthephasetransferofhydrophobicQDsfromorganicsolventstoaqueoussolutionviahydrophilicbackbone(i.e.,alginate).Theschematicdrawingofthewater-solubleCdSe/ZnSQDsencapsulatedwithamphiphilicalgi-nateisshowninFig.1(a).Theaveragesizeofwater-solubleQDsencapsulatedbyalginatesurfactantswasdeterminedtobe23.1nmintherangeof18.1–28.7nmshowninFig.1(b).Aslongasthenum-berofpendantgroupsissufficientlyhigh,thelinkageofamphiphilicalginatetotheQDsurfacecouldbeverystableandtherebyleadtothephysicalpropertiesofQDintact.Theabsorptionandemis-sionspectraofQDencapsulatedwithamphiphilicalginategiven
inFig.2(a)revealhigherabsorbancebetween525and550nmandstrongphotoluminescencewiththeemissionwavelengthpeakedat534nmafterexcitedbyUV-light.TheinsetimageinFig.2(a)illustratesthebrightgreencolorofAA-QDinaqueoussolution.TodemonstratetheformationofQD–viruscomplexesviacolloidalclusteringofnegativelychargedQDanddenguevirusincationicpolybrenesolution,TEMimageofQD–viruscomplexeswastakenandshowedinFig.2(b).Intheimage,thelight-colorparticleswiththesizearound40–50nmaredenguevirus,andthedark-colorpar-ticlestaggedonthesurfaceofviralparticlesareAA-QDs(about10–15nm).
3.2.Cell–QDinteraction
Fig.3showedthephotomicrographicalimagesofBHK-21cellsincubatedwithAA-QDsatvarioustimeperiods.InFig.3(a)–(b),whentheAA-QDs(zetapotentialmeasurementof−7.18mV)addedincellculturedishwithoutpolybrenerespectivelyfor30and60min,AA-QDswerenotdetectedunderfluorescentmicroscopyafterremainedAA-QDswaswashedoffwithPBS.Thisisduetoelectricalrepulsionbetweenalginatemacromoleculeandcellsur-facewhicharebothnegativelycharged.However,after120minco-cultureofAA-QDsandcellswithouttheadditionofpoly-brene,greendotsrepresentingQDswereabletobepinpointedwithincellulardomain(Fig.3(c)).Itissurmisedthat,givenalongerincubationtime(i.e.,120min),sufficientamountofpro-teins(ingredientsfromfetalbovineserum)adsorbedontothesurfaceofnegativelychargedAA-QDstriggerednonspecificcellbindingandensuingendocytosis.While,inFig.3(d)–(f),AA-QDswerestartedtobedetectedintheintracellularspace60minpost-incubation,inthepresenceof10g/mLpolybrene.Thisisprobablybecausetheelectrostaticneutralizationeffectofpoly-cationicpolybreneledtononspecificadsorptionofnegativelychargedAA-QDsonnegativelychargedcellmembrane.Itisnoteworthythatpolybreneisacationicpolymerandhasbeenreportedtoactbyneutralizingnegativechargesonthesurfaceofcellsandvirionstopromotevirusattachmentandenhanceviraltransductionrate(KwonandPeng,2002).Oncethecon-centrationofpolybreneincreasedto50g/mL,AA-QDswereabletoenterthecellportswithinashortperiodoftimeand
Fig.5.PhotomicrographicalimagesofBHK-21cellsexposedtoQD–viruscomplexeswith50g/mLpolybreneat30,60,and120min,respectively.Thenormalizedfluorescenceintensitiesperselectedcellareaof(b)and(c)basedonthefluorescenceintensityperselectedcellareaof(a)are1.23and2.73,respectively.MOI=0.5andscalebar=25m.
1018C.-H.Wangetal./BiosensorsandBioelectronics24(2008)1012–1019
expressedgreenfluorescenceinBHK-21cellsafter30minoftreat-ment.
3.3.EffectofpolybreneoninfectivityofQD–virus
TheQDsencapsulatedwithamphiphilicalignatesurfactantswereemployedtoformcolloidalclusterswithdengueviruses(zetapotentialmeasurementof−6.04mV)inthepresenceofcationicpolybrene.Todeterminethesuitableviralconcentrationforthedevelopmentofquickandefficientcell-basedfluorescentimagingdrugscreeningplatform,variousMOIs(multiplicityofinfection)wereemployedrangingfrom0.1to1.OurresultsshowedthatQD–viruscomplexeswithanetpositivecharge(zetapotentialmeasurementof+2.84mV)wereinternalizedintoBHK-21cellsbyreceptor-mediatedendocytosis,andcanbedetectedincellu-larmilieu.AsshowninFig.4(a)–(f),greenfluorescentintensityexpressedwithinBHK-21cellsduetotheentranceofQD–viruswasaugmentedinproportiontotheincrementofMOI(from0.1to0.5).ToconfirmtheQD–viruscomplexeswereindeedinternalizedintoBHK-21cellsratherthanabsorbedoncellsurface,aseriesofpho-tomicrographstakenbyaconfocalmicroscopealongthez-axisofselectedinfectedcellsareshowninFig.4(g).Thegreenfluores-
cencewasfurtherenhancedwhentheconcentrationofpolybreneincreasedfrom10to50g/mLwithMOImaintainedat0.5(showninFig.5(a)–(c)).Sincepreservationofviralinfectivityaftertag-gingviruswithQDsisofutmostimportanceforQD–virusimagingmodalityofferingmeaningfulinformation,plaqueformingassayswereperformedwithBHK-21cellstreatedwithintactdenguevirusesandQD–viruscomplexes.Theresult(datanotshown)indi-catedthenumberofplaqueformingunitsnumeratedfromthecellsinfectedwithQD–viruscomplexeswasonlyslightlylowerthanthecontrolgroup(i.e.,dengueviruseswithoutQDstagging).ThisimpliesthatdengueviralinfectivitywasretainedusingthemethodofincorporationviruswithQDsinpolycationicsolution.Thisisconsistentwiththepreviousreportindicatingtheinfec-tivityofincompetentretrovirusasaviralgenedeliveryvehicledecreasesslightlywhenmixedwithQDinpolycationicsolution(Youetal.,2006).Incontrasttovirusescovalentlylabeledwithflu-orescentdyes,themethoddevelopedinthisstudyseemstobeasuperiorone.Inthecaseofadeno-associatedvirus(AAV),whichisarelativelysmallvirus(∼25nmindiameter),ithasbeenshownthatforadye-to-particleratiohigherthantwo,theinfectioustiterwasseverelyaffected,namelythenumberofviruseswhichwereabletoinfectacellwaslowered(Seisenbergeretal.,2001).It
Fig.6.PhotomicrographicalimagesofBHK-21cellstreatedwithandwithoutallophycocyaninforonehour,thenexposedtoQD–viruscomplexeswith50g/mLpolybreneforvariousperiodsoftime.(a)–(d)ImagesofBHK-21cellsincubatedwithQD–viruscomplexesfor30min,aftercellspre-treatedwithallophycocyaninof0,6.25,31.25,and125g/mL,respectively;(e)–(h)imagesofBHK-21cellsincubatedwithQD–viruscomplexesfor60min,aftercellspre-treatedwithallophycocyaninof0,6.25,31.25,and125g/mL,respectively.Thenormalizedfluorescenceintensitiesperselectedcellareaof(b)–(h)basedonthefluorescenceintensityperselectedcellareaof(a)are0.72,0.66,0.54,2.92,1.02,0.66,and0.52,respectively.MOI=0.5andscalebar=25m.
C.-H.Wangetal./BiosensorsandBioelectronics24(2008)1012–10191019
shouldbenotedthatthecellshapeofFig.5(b)turnedintolargeonesafterBHK-21cellswereinfectedwithQD–viruscomplexesfor60min.ThesituationgetsevenworseforcellstreatedwithQD–viruscomplexesupto120min(seeFig.5(c)).Wespeculatesuchcellmorphologicalchangeswerecausedbytheviraldam-ageofcellmachinery(e.g.,cytoskeleton),therebyleadingtocelllysis.
Inadditiontothemicroscopy-basedfluorescencetechnique,biochemicalmethodsarealsoavailabletoanalyzethebiologyofthevirus(Girodetal.,1999).Inmanyofthesemethods,viralgeneexpressionisdeterminedafteracertainlongincubationtime.Moreover,mostofthemethodsareverytimeconsumingandalargeamountofviruseshastobeused.Inviewoftheneedofpoly-breneforneutralizingelectrostaticrepulsionforcebetweenbothnegativelychargeddenguevirusandamphiphilicalginatecoatedQD,itisconjecturedthathavingQDscappedbypositivelychargedwater-solubleligands(orpolymers)todirectlyformcomplexeswithviruseswithouttheaidofpolybreneprobablyisafeasibleandmuchsimplemethod.
3.4.Antiviralactivityofallophycocyanin
AccordingtotheresultsshowninFig.5,itisreasonabletospeculatethat,ifanypotentialcompoundhasanti-dengueviralfeature,theintensityofgreenfluorescenceemittedfromQD–viruscomplexesinternalizedincellsshouldbedrasticallydiminished.InordertotestifQD–viruscomplexescanbehar-nessedasdiagnosticprobesforfastscreeningpotentialanti-denguedrugs,allophycocyaninwasselectedasthemodelcompoundforexploringtheefficacyofQD–virusimagingmodalityforscreen-inganti-dengueviraltherapeuticagents.AllophycocyaninhasbeenreportedtoneutralizeEV71-inducedcytopathiceffectinbothhumanrhabdomyosarcomacellsandAfricangreenmonkeykid-neycells.Antiviralactivitywasmoreefficientinculturestreatedwithallophycocyaninbeforeviralinfectioncomparedwiththatintheculturestreatedafterinfection(Shihetal.,2003).AsshowninFig.6(a)–(d),theintensityofgreenimageswithinBHK-21cellswasdecreasedalongwiththedosageincreaseofallophycocyaninprovidedonehourpriortotheadditionofQD–viruscomplexeswhichwereconstructedinthepresenceof50g/mLpolybrene.ItshouldbenotedthatcellsincubatedwithQD–viruscomplexesforonly30mincangiveafairlyclearfluorescentintensitydecreasewiththeconcentrationofallophyscocyaninupto125g/mL.Forcellstreatedwithallophycocyaninhigherorequalto31.25g/mLforonehourthenchallengedwithQD–viruscomplexesfor60min,thediminishofgreenfluorescenceisevenastonishingprominent.Comparedtootheranti-viralagentscreeningassays,thecell-basedQD–virusimagingmodalityexploitedinthisstudyindeedhasfast
andefficientfeaturesforscreeningantiviraltherapeutics.Since,thepIvalueofallophycocyaninwasmeasuredaround4.5,anetnegativechargeofallophycocyaninwillberevealedinthecellcul-turemedium.SuchnegativelychargedallophycocyaninmightbeassociatedwithpositivelychargedQD–viruscomplexesiffreeallo-phycocyaninremainedintheculturemedium.However,inourstudy,BHK-21cellswereonlytreatedwithallophycocyaninfor1handwashedthreetimeswithPBSsolution.ThereisnoconcernofallophycocyanininterferenceontheinteractionbetweenQD–viruscomplexesandcells.4.Conclusion
ToconstructQD–virusimagingmodalitycapableofprovidingmeaningfulinformation,preservationofviralinfectivityaftertag-gingviruswithQDsisofutmostimportance.Inthisstudy,wedemonstratetheinfectivityofQD–virusformedviacolloidalclus-teringinthepresenceofpolycationicpolybreneremainedintacttobeinternalizedbycellssusceptibletodenguevirus.Theefficacyofanti-dengueviralactivityofanalgalextractwasclearlyillustratedbytheconstructedinorganic–organichybridplatforminaquickandefficientmanner.Acknowledgements
TheauthorsthankDr.Huan-YaoLei(InstituteofBasicMedi-calSciences,NationalChengKungUniversity,Tainan,Taiwan)forprovidingdenguevirusanditsrelatedinformation.References
Bruchez,M.J.,Moronne,M.,Gin,P.,Weiss,S.,Alivisatos,A.P.,1998.Science281,
2013–2016.
Chan,W.C.W.,Nie,S.M.,1998.Science281,2016–2018.Chu,J.J.H.,Yang,P.L.,2007.PNAS104,3520–3525.
Dubertret,B.,Skourides,P.,Norris,D.J.,Noireaux,V.,Brivanlou,A.H.,Libchaber,A.,
2002.Science298,1759–1762.
Girod,A.,Ried,M.,Wobus,C.,Lahm,H.,Leike,K.,Kleinschmidt,J.,Deleage,G.,Hallek,
M.,1999.Nat.Med.9,1052–1056.
Gubler,D.J.,Clark,G.G.,1995.Emerg.Infect.Dis.1,55–57.Kwon,Y.J.,Peng,C.-A.,2002.Biotech.Bioeng.77,668–677.Liu,H.S.,Lin,Y.L.,Chen,C.C.,1997.ActaVirol.41,317–324.
Michalet,X.,Pinaud,F.F.,Bentolila,L.A.,Tsay,J.M.,Doose,S.,Li,J.J.,Sundaresan,G.,
Wu,A.M.,Gambhir,S.S.,Weiss,S.,2005.Science307,538–544.
Mulder,W.J.M.,Koole,R.,Brandwijk,R.J.,Storm,G.,Chin,P.T.K.,Strijkers,G.J.,Donega,
C.D.,Nicolay,K.,Griffioen,A.W.,2006.NanoLett.6,1–6.
Parak,W.J.,Pellegrino,T.,Plank,C.,2005.Nanotechnology16,R9–25.
Pinaud,F.,King,D.,Moore,H.-P.,Weiss,S.,2004.J.Am.Chem.Soc.126,6115–6123.Seisenberger,G.,Ried,M.U.,Endreb,T.,Buning,H.,Hallek,M.,Brauchle,C.,2001.
Science294,1929–1932.
Shih,S.R.,Tsai,K.N.,Li,Y.S.,Chueh,C.C.,Chan,E.C.,2003.J.Med.Virol.70,119–125.You,J.O.,Liu,Y.S.,Liu,Y.C.,Joo,K.I.,Peng,C.A.,2006.Int.J.Nanomed.1,59–64.Zhelev,Z.,Ohba,H.,Bakalova,R.,2006.J.Am.Chem.Soc.128,6324–6325.
因篇幅问题不能全部显示,请点此查看更多更全内容