行测数学运算16种题型之时钟问题
基本思路:封闭曲线上的追及问题。
关键问题:
①确定分针与时针的初始位置;
②确定分针与时针的路程差;
基本方法:
①分格方法:
时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走1/12分格,故分针和时针的速度差为11/12分格/分钟。
②度数方法:
从角度观点看,钟面圆周一周是360°,分针每分钟转360/60度,即6°,时针每分钟转360/12*60度,即0.5度,故分针和时针的角速度差为5.5°/分钟。
【例题1】从12时到13时,钟的时针与分针可成直角的机会有:
A.1次 B.2次 C.3次 D.4次
【解析】
时针与分针成直角,即时针与分针的角度差为90度或者为270度,理论上讲应为2次,还要验证:
根据角度差/速度差 =分钟数,可得 90/5.5= 16又4/11<60,表示经过16又4/11分钟,时针与分针第一次垂直;同理,270/5.5 = 49又1/11<60,表示经过49又1/11分钟,时针与分针第二次垂直。经验证,选B可以。
【例题2】在某时刻,某钟表时针在10点到11点之间,此时刻再过6分钟后的分针和此时刻3分钟前的时针正好方向相反且在一条直线上,则此时刻为
A.10点15分:
B.10点19分
C.10点20分
D.10点25分
【解法1】时针10―11点之间的刻度应和分针20―25分钟的刻度相对,所以要想时针与分针成一条直线,则分针必在这一范围,而选项中加上6分钟后在这一范围的只有10点15分,所以答案为A。
【解法2】常规方法
设此时刻为X分钟。则6分钟后分针转的角度为6(X+6)度,则此时刻3分钟前的时针转的角度为0.5(X+3)度,以0点为起始来算此时时针的角度为0.5(X―3)+10×30度。所谓“时针与分针成一条直线”即0.5(X―3)+10×30―6(X+6)=180度,解得X=15分钟。
【例题3】 现在是2点,什么时候时针与分针第一次重合?
解析:2点的时候分针和时针的角度差为60°,而分针和时针的角速度差巍为5.5°/分钟,所以时间为60/5.5=120/11 分。即经过120/11分钟后时针与分针第一次重合。
【例题4】 在7点与8点之间,时针与分针在什么时刻相互垂直?
解析:在7点与8点之间,时针与分针会有两次垂直的机会。在7点的时候,分针与时针的角度为210°,第一次垂直时分针需要追及的角度为120°,则时间为120/5.5=240/11分,第二次垂直时分针需要追及的角度为300°,则时间为300/5.5=600/11分。
【例题5】晚上7点到8点之间电视里播出一部动画片,开始时分针与时针正好成一条直线,结束时两针正好重合。这部动画片播出了多长时间?
解析:7点的时候分针与时针的角度差为210°,重合的时候分针追及的角度为30°,则时间为30/5.5=60/11 分钟。重合的时候分针追及的角度为210°,则时间为210/5.5=420/11,时间差为360/11分钟。
【例题6】3点过多少分时,时针和分针离“3”的距离相等,并且在“3”的两边?
解析:时针和分针离3的距离相等,即时针和分针与3的角度相等。列方程如下:0.5X=90-6X X=180/13分钟。
【例题7】小王去开会,会前会后都看了表,发现前后时针和分针位置刚好互换,问会开了1小时几分()
A.51 B 49 C47 D45
解析:时间大于1小时小于两小时,又因为时针和分针的位置互换,则分针与时针共同转过的角度和为720°,则时间为720/6.5=1440/13约等于1小时51分钟。
【例题8】会议开始时,小李看了一下表,会议结束时,又看了一下表,结果分针与时针恰好对调了位置.会议在3
点至4点之间召开,5点至6点之间结束,请问会议何时召开?
【解析】会议在3点至4点之间召开,5点至6点之间结束。
那么会议开始的大致时间我们可以得到是3点25-30之间。会议结束的时间大致是5点15-20分。会议结束时时针的位置就是会议开始时分钟的位置,15-20分,时针转的格数是15/12-20/12=5/4-5/3之间,那么分钟就在这个位置。5点位置分针是25分,加上5/4-5/3就是分钟的位置。
常规解法:会议持续的时间为720/6.5=1440/13分钟=24/13小时
假设会议开始的时间为3点X分。那么会议开始时时针的格数为15+1/12 *X格
会议结束时时针的格数为X格。得X=15+X/12+5*(24/13)
看帖回帖,多多支持楼主!点击注册 查找资料到上方\"搜索\"
回复
举报
离线亚亚
常务副会长
发帖13429 贡献值1984 交易券552 宣传单7 考友币0 加关注
发消息
只看该作者 板凳 发表于: 2011-07-21
行测数学运算16种题型之尾数计算法
自然数N次方的尾数变化情况
2n是以“4”为周期变化的,分别为2,4,8,6。。。。。。
3n是以“4”为周期进行变化的,分别为3,9,7,1。。。。。。
7n是以“4”为周期进行变化的,分别为7,9,3,1。。。。。。
8n是以“4”为周期进行变化的,分别为8,4,2,6。。。。。。
4n是以“2”为周期进行变化的,分别为4,6。。。。。。
9n是以“2”为周期进行变化的,分别为9,1。。。。。。
5n、6n尾数不变。
【例1】2*2007+3*2007+4*2007+5*2007+6*2007+7*2007+8*2007+9*2007的值的个数为是多少?
【解析】原式的个位数等价于2*3+3*3+4*1+5+6+7*3+8*3+9=4.
【例2】1!+2!+3!+4!+5!+……1000!尾数是几?
【解析】5!为0,5以后的数的!都为0,所以我们要算这个数的尾数,只算1!,2!,3!,4!就可以了,1!的尾数为1,2!的尾数为2,3!的尾数为6,4!的尾数为4,所以该式的尾数为(1+2+6+4=13=3。
凑整计算法是简便运算中最常用的计算方法,也就是根据交换规律、结合规律把可以凑成10、20、30、50、100、1000…的相对方便计算的数放在一起运算,从而提高运算速度。
学习凑整计算法,我们首先必须掌握一些最基本的凑整算式,具体如下:
5×2=10
25×4=100
25×8=200
25×16=400
125×4=500
125×8=1000
125×16=2000
625×4=2500
625×8=5000
625×16=10000
……
【例题1】0.0495×2500+49.5×2.4+51×4.95=( )(2004年中央A类真题)
A. 4.95 B.49.5 C. 495 D. 4950
【答案及解析】本帖隐藏的内容需要回复才可以浏览 开通VIP,拥有隐藏帖子免回复特权!不用回复也能看!
【例题2】274+135+326+265=( )
【答案及解析】
本帖隐藏的内容需要回复才可以浏览 开通VIP,拥有隐藏帖子免回复特权!不用回复也能看!
【例题3】1986+2381
【答案及解析】
原式=2000-14+2381
=2000+2381-14
=6381-14=6367
间接利用补数法巧算,假如两个加数没有互补关系,可以间接利用补数进行加法巧算。
【例题4】34.16+47.82+53.84+64.18=( )。
A.198 B.200 C.201 D.203
【答案及解析】B。这是一个“聚10”相加法的典型例题,所谓“聚10”相加法,即当有几个数字相加时,利用加法的交换律与结合律,将加数中能聚成“10”
或“10”的倍数的加数交换顺序,先进行结合,然后再把一些加数相加,得出结果。或者改变运算顺序,将相加得整十、整百、整千的数先结合相加,再与其它数相加,得出结果。这是一种运用非常普普遍的巧算方法,这道题目中四个数字都是由整数部分和小数部分组成。因而可以将此题分成整数部分和小数部分两部分来考虑。若只看整数部分,第二个数与第三个数之和正好是100,第一个数与第四个数之和正好是98,再看小数部分,第一个数的0.16与第三个数的0.84的和正好为1,第二个数的0.82与第四个数的0.18之和也正好为1,因此,总和是整数部分加上小数部分,即100+98+1+1=200。故选B。
【例题5】4023+98+397=( )
A.4418 B.4518 C.4520 D.4618
【答案及解析】B。这是一道“加整减零”的典型题。所谓加整减零是指,如果加数是接近整千,整百,整十的数,可以先加上整千,整百,整十的数,再减去多加了的数;减整加零则是指:如果减数接近整千,整百,整十的数,可以先减去整千,整百,整十的数,再加上多减了的数。通过观察,我们会发现,98,和397接近整数,这样,可采用“加整减零”法进行快速运算,可知B项为正确答案。
【例题6】125×437×32×25=( )
A.43700000 B.87400000 C.87455000 D.43755000
看帖回帖,多多支持楼主!点击注册 查找资料到上方\"搜索\"
回复
举报
离线亚亚
常务副会长
发帖13429 贡献值1984 交易券552 宣传单7 考友币0 加关注
发消息
只看该作者 地板 发表于: 2011-07-21
行测数学运算16种题型之数的整除性
1、数的整除性质:
(1)对称性:若甲数能被乙数整除,乙数也能被甲数整除,那么甲、乙两数相等。
(2)传递性:若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。
(2) 若两个数能被一个自然数整除,那么这两个数的和与差都能该自然数整除。
(3) 几个数相乘,若其中有一个因子能被某一个数整除,那么它们的积也能被该数整除。
(4) 若一个数能被两个互质数中的每一个数整除,那么这个数也能分别被这两个互质数的积整除。
(5) 若一个数能被两个互质数的积整除,那么,这个数也能分别被这两个互质数整除。
(6) 若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。
2、数的整除特征:一个数要想被另一个数整除,该数需含有对方所具有的质数因子。
(1)1与0的特性: 1是任何整数的约数,0是任何非零整数的倍数。
(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)若一个整数的数字和能被3(9)整除,则这个整数能被3(9)整除。
(4) 若一个整数的末尾两位数能被4(25)整除,则这个数能被4(25)整除。
(5)若一个整数的末位是0或5,则这个数能被5整除。
(6)若一个整数能被2和3整除,则这个数能被6整除。
(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
(8)若一个整数的末尾三位数能被8(125)整除,则这个数能被8(125)整除。
(9)若一个整数的末位是0,则这个数能被10整除。
(10)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。(不够减时依次加11直至够减为止)。11的倍数检验法也可用上述检查7的(割尾法)处理,过程唯一不同的是:倍数不是2而是1。
(11)若一个整数能被3和4整除,则这个数能被12整除。
(12)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
一个三位以上的整数能否被7(11或13)整除,只须看这个数的末三位数字表示的三位数与末三位数字以前的数字所组成的数的差(以大减小)能否被7(11或13)整除。
另法:将一个多位数从后往前三位一组进行分段。奇数段各三位数之和与偶数段各三位数之和的差若被7(11或13)整除,则原多位数也被7(11或13)整除。
(13)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
(14)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。
(15)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。
(16)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。
(17)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。
例题1.(2007年中央第60题)
有一食品店某天购进了6箱食品,分别装着饼干和面包,重量分别为8、9、16、20、22、27公斤。该店当天只卖出一箱面包,在剩下的5箱中饼干的重量是面包的两倍,则当天食品店购进了( )公斤面包。
A.44 B.45
C.50 D.52
【解析】本题是整除运算题目。由题意可知,6箱食品共重102公斤,设卖出的一箱面包为x公斤,又由
于剩下的5箱中饼干的重量是面包的两倍,所以(102-x)应是3的倍数,并且(102-x)÷3应是其余5箱中一箱的重量或几箱重量的和。只有当x=27时符合条件,此时共有面包27+(102-27)÷3=52公斤。故选D。
例题2.(2006年中央(一类)第50题,(二类)第34题)
一个三位数除以9余7,除以5余2,除以4余3,这样的三位数共有( )。
A.5个 B.6个
C.7个 D.8个
【解析】本题要运用整除运算。根据“除以5余2”,可知该数的尾数为2或7;而根据“除以4余3”,可知其尾数只能为7,根据“除以9余7”,该数可以表示为9x+7,其中x的范围为11至110;其中尾数为7的有9y+7,其中y的范围为20至110,经检验可知,当y为30、50、70、90、110时,该三位数仍不能符合“除以4余3”的条件,即只有当y为20、40、60、80、100时,该三位数才满足三个条件,因此共有5个三位数。故选A。
例题3:求一个首位数字为5的最小六位数,使这个数能被9整除,且各位数字均不相同。
分析:由于要求被9整除,可只考虑数字和,又由于要求最小的,故从第二位起应尽量用最小的数字排,并试验末位数字为哪个数时,六位数为9的倍数。
【解析】一个以5为首位数的六位数,要想使它最小,只可能是501234(各位数字均不相同)。但是501234的数字和5+0+1+2+3+4=15,并不是9的倍数,故只能将末位数字改为7,这时, 5+0+1+2+3+7=18是9的倍数,故501237是9的倍数。
即501237是以5为首位,且是9的倍数的最小六位数。
例题4:从0、1、2、4、7五个数中选出三个组成三位数,其中能被3整除的有 几个?
【解析】三位数的数字和字和应被3整除,所以可取的三个数字分别是:
0,1,2; 0,2,4; 0,2,7; 1,4,7。
于是有:(2*2*1)*3+3*2*1=18﹝个﹞
例题5:某个七位数1993□□□能够同时被2、3、4、5、6、7、8、9整除,那么它的最后三字依次是多少?
【解析】这个七位数能被2、3、4、5、6、7、8、9整除,
所以能被2、3、4、5、6、7、8、9的最小公倍数整除。
这个最小公倍数是5*6*7*8*9=2520。
1993000/2520=790......2200
2520-2200=320
所以最后三位数依次是3、2、0。
例题6:十个连续的自然数,其中的奇数之和为85,在这10个连续的自然数中,是3的倍数的数字之和最大是多少?
A56 B66 C54 D52
【解析】奇数之和为85,则这个5个奇数为13、15、17、19、21,由此可知这十个最大为13-22,则3
的倍数为:12、15、18、21。
看帖回帖,多多支持楼主!点击注册 查找资料到上方\"搜索\"
回复
举报
离线亚亚
常务副会长
发帖13429 贡献值1984 交易券552 宣传单7 考友币0 加关注
发消息
只看该作者 地下室 发表于: 2011-07-21
行测数学运算16种题型之统筹问题
统筹问题在日常生活中会经常遇到,是一个研究怎样节省时间、提高效率的问题。随着公务员考试数学运算试题越来越接近生活,注重实际,这类题目出现的几率也越来越大。
例1、某服装厂有甲、乙、丙、丁四个生产组,甲组每天能缝制8件上衣或10条裤子;乙组每天能缝制9件上衣或12条裤子;丙组每天能缝制7件上衣或11条裤子;丁组每天能缝制6件上衣或7条裤子。现在上衣和裤子要配套缝制(每套为一件上衣和一条裤子),则7天内这四个组最多可以缝制衣服( ) 【国家2006二类-42】
【解析】我们根据题意可得出如下一表
每天生产上衣 每天生产裤子 上衣:裤子
甲 8 10 0.8
乙 9 12 0.75
丙 7 11 0.636
丁 6 7 0.857
综合情况 30 40 0.75
由上表我们发现,只有乙组的上衣和裤子比例与整体的上衣和裤子比例最接近(本题相等),这说明其它组都有偏科情况,若用其它组去生产其不擅长的品种,则会造成生产能力的浪费,为了达到最大的生产能力,则应该让各组去生产自己最擅长的品种,然后让乙组去弥补由此而造成的偏差(左右救火),因为乙组无论是生产衣服还是裤子,对整体来讲,效果相同,所以应该让乙组去充当最后的救火队员角色。
上面甲、乙、丙、丁四组数据中,上衣与裤子的比值中甲和丁最大,为了缩小总的上衣与裤子的差值,又能生产出最多的裤子,甲和丁7天全部要生产上衣,丙中上衣和裤子的比值最小,所以让丙7天都做裤子,以达到裤子量的最大化,这样7天后,甲、丙、丁共完成上衣98件,裤子77件。
下面乙组如何分配就成了本题关键。由上面分析可知,7天后,甲、丙、丁生产的上衣比裤子多21条,所以乙要多生产21条裤子,并使总和最大化。可设乙用x天生产上衣,则9x+21=12(7-x),解得x=3,即乙用3天生产上衣27件,用4天生产裤子48件。于是最多生产125套。
组别 生产衣服 生产裤子
甲 7天 (7*8=56) 0天 (0*10=0)
丙 0天 (7*0=0) 7天 (11*7=77)
丁 7天 (7*6=42) 0天 (0*7=0)
总和 98件 77件
乙组 3天 (3*9=27) 4天(4*12=48)
总和 98+27=125 77+48=125
所以答案应该是125套服装。
这种统筹问题总的思路是:先计算整体的平均比值,选出与平均比值最接近的组项放在一边,留作最后的弥补或者追平工具,然后将高于平均值的组项赋予高能力方向发挥到极限,将低于平均值的组项赋予低能力方向发挥到极限,得出总和,然后用先前挑出的组项去追平或者弥补,就可以得极限答案。
之所以这样安排,是因为最接近中值的组项,去除后对平均值的影响最小(本题恰好相等),则意味着它的去除不影响整体平均能力,但是用它去追平其余各组的能力差异时,最容易达到平衡。
例2、甲乙两个服装厂每个工人和设备都能全力生产同一种规格的西服。甲厂每月用5/3的时间生产上衣,5/2的时间生产裤子,全月恰好生产900套西服;乙厂每月用7/4的时间生产上衣,7/3的时间生产裤子,全月恰好生产1200套西服。现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?
A.30 B.40 C.50 D.60
答案D。【解析】:两厂联合生产,尽量发挥各自特长。因乙厂生产上衣的效率高,所以安排乙厂全力生产上衣。由于乙厂用 月生产1200件上衣,那么乙厂全月可生产上衣:1200÷ =2100件。同时,安排甲厂全力
生产裤子,则甲厂全月可生产裤子:900÷ =2250条。为了配套生产,甲厂先全力生产2100条裤子,这需要2100÷2250= 月,然后甲厂再用 月单独生产西服;900× =60套,故现在比原来每月多生产2100+60-(900+1200)=60套。
例3、某制衣厂两个制衣小组生产同一规格的上衣和裤子,甲组每月18天时间生产上衣,12天时间生产裤子,每月生产600套上衣和裤子;乙组每月用15天时间生产上衣,15天时间生产裤子,每月生产600套上衣和裤子。如果两组合并,每月最多可以生产多少套上衣和裤子?
A.1320 B.1280 C.1360 D.1300
答案A。解析:由题意知:甲生产裤子速度快,乙生产上衣比较快,那么就先发挥所长,即乙用一个月可生产上衣1200套,而甲生产1200套裤子只需24天,剩下6天甲单独生产,可生产120套,故,最多可生产1200+120=1320套。
例4、人工生产某种装饰用珠链,每条珠链需要珠子25颗,丝线3条,搭扣1对,以及10分钟的单个人工劳动。现有珠子4880颗,丝线586条,搭扣200对,4个工人。则8小时最多可以生产珠链( )。 【国家2006一类-38】
a.200条 b.195条 c.193条 d.192条
【解析】4880颗珠子最多可以生产珠链195条(剩余5颗珠子), 586条丝线最多可以生产珠链195条(剩余一条丝线),搭扣200对最多可以生产珠链200条,8小时共有48个10分钟,则4个工人最多可以生产珠链4*48=192条。取195、200、192的最小值,故答案为d。
例5、毛毛骑在牛背上过河,他共有甲、乙、丙、丁4头牛,甲过河要2分钟,乙过河要3分钟,丙过河要4分钟,丁过河要5分钟。毛毛每次只能赶2头牛过河,要把4头牛都赶到对岸去,最少要多少分钟?
A.16 B.17 C.18 D.19
【答案】A。【解析】:因为是允许两头牛同时过河的(骑一头,赶一头),所以若要时间最短,则一定要让耗时最长的两头牛同时过河;把牛赶道对面后要尽量骑耗时最短的牛返回。我们可以这样安排:先骑甲、乙过河,骑甲返回,共用5分钟;再骑丙、丁过河,骑乙返回,共用8分钟;最后再骑甲、乙过河,用3分钟,故最少要用5+8+3=16分钟。
简单公式:(最快+最慢)+3*第二快的
例6、甲地有89吨货物运到乙地,大卡车的载重量是7吨,小卡车的载重量是4吨,大卡车运一趟耗油14升,小卡车运一趟货物耗油9升,运完这些货物最少耗油多少升?
A.181 B.186 C.194 D.198
答案A。解析:大卡车每吨货物要耗油14÷7=2升,小卡车每吨货物要耗油9÷4=2.25升,则应尽量用大卡车运货,故可安排大卡车运11趟,小卡车运3趟,可正好运完89吨货物,耗油11×14+3×9=181升。
例7、 全公司104人到公园划船,大船每只载12人,小船每只载5人,大、小船每人票价相等,但无论坐满与否都要按照满载计算,若要使每个人都能乘船,又使费用最省,所租大船最少为多少只?
A.8 B.7 C.3 D.2
答案D。解析:要使费用最省,应让每只船都坐满人,则大船最少为2只小船16只时,每只船都满载,故大船最少为2只。
例8、一个车队有三辆汽车,担负着五家工厂的运输任务,这五家工厂分别需要7、9、4、10、6名装卸工,共计36名;如果安排一部分装卸工跟车装卸,则不需要那么多装卸工,而只要在装卸任务较多的工厂再安排一些装卸工就能完装卸任务,那么在这种情况下,总共至少需要( )名装卸工才能保证各厂的装卸要求?
A.26 B.27 C.28 D.29
答案:A。解析:每车跟6个装卸工,在第一家,第二家,第四家工厂分别安排1,3,4个人是最佳方案。事实上,有M辆汽车担负N家工厂的运输任务,当M小于N时,只需把装卸工最多的M家工厂的人数加起来即可,具体此题中即10+9+7=26。而当M大于或等于N时需要把各个工厂的人数相加即可。
例9、把7个3×4的长方形不重叠的拼成一个长方形。那么,这个大长方形的周长的最小值是多少?
A.34 B.38 C.40 D.50
答案B。解析:操作题,可将4个长方形竖放,3个横放,可得一个大长方形,长为12,宽为7,故周长为(12+7)×2=38。
注:当面积一定时,长,宽越接近,周长则越小。
行测数学运算16种题型之数的分解与拆分
数的拆分问题是公务员考试常考的题型之一,考察对数的基本特性的掌握,通常此类问题都比较灵活。一般来说此类问题整体难度不大,不过像考试中常用的代入法等在此将不再实用,故掌握方法就变得特别重要。
1.分解因式型:就是把一个合数分解成若干个质数相乘的形式。运用此方法解题首先要熟练掌握如何分解质因数,还要灵活组合这些质因数来达到解题的目的。
【例1】三个质数的倒数之和为a/231 ,则a=( )
A.68 B.83 C.95 D.131
【解析】将231分解质因数得231=3×7×11,则 1/3+1/7 +1/11 =131/231 ,故a=131。
【例2】 四个连续的自然数的积为3024,它们的和为( )
A.26 B.52 C.30 D.28
【解析】分解质因数:3024=2×2×2×2×3×3×3×7=6×7×8×9,所以四个连续的四个自然数的和为6+7+8+9=30。
【例3】20^n是2001*2000*1999*1998*……*3*2*1的因数,自然数n最大可能是多少?
A 499 B500 C 498 D501
【解析】20^n=5*2*2的N次方,显然2001*2000*1999*1998*……*3*2*1中,能分解出来的2个个数要远远大于5的个数,所以2001*2000*1999*1998*……*3*2*1中最多能分解多少个5也就是N的最大值,由此计算所求应为【2001÷5】+【2001÷25】+【2001÷125】+【2001÷625】=400+80+16+3=499。
注:【】取整数部分。
2.已知某几个数的和,求积的最大值型:
基本原理:a2+b2≧2ab,(a,b都大于0,当且仅当a=b时取得等号)推 论:a+b=K(常数),且a,b都大于0,那么ab≦((a+b)/2)2,当且仅当a=b时取得等号。此结论可以推广到多个数的和为定值的情况。
【例1】3个自然数之和为14,它们的的乘积的最大值为( )
A.42 B.84 C.100 D.120
【解析】以下内容需要回复才能看到 开通VIP,拥有隐藏帖子免回复特权!不用回复也能看!
若使乘积最大,应把14拆分为5+5+4,则积的最大值为5×5×4=100。也就是说,当不能满足拆分的数相等的情况下,就要求拆分的数之间的差异应该尽量的小,这样它们的乘积才能最大,这是做此类问题的指导
思想。下面再举一列大家可以自己体会.
【例2】将17拆分成若干个自然数的和,这些自然数的乘积的最大值为( )A.256 B.486 C.556 D.376
【解析】以下内容需要回复才能看到 开通VIP,拥有隐藏帖子免回复特权!不用回复也能看!
将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为 ×2=486。
3. 排列组合型: 运用排列组合知识解决数的分解问题。要求对排列组合有较深刻的理解,才能达到灵活运用的目的。
【例1】有多少种方法可以把100表示为(有顺序的)3个自然数之和?( )
A.4851 B.1000 C.256 D.10000
【解析】以下内容需要回复才能看到 开通VIP,拥有隐藏帖子免回复特权!不用回复也能看!
插板法:100可以想象为100个1相加的形式,现在我们要把这100个1分成3份,那么就相等于在这100个1内部形成的99个空中,任意插入两个板,这样就把它们分成了三个部分。而从99个空任意选出两个空的选法有:C992=99×98/2=4851(种);故选A。
(注:此题没有考虑0已经划入自然数范畴,如果选项中出现把0考虑进去的选项,建议选择考虑0的那个选项。)
【例2】 学校准备了1152块正方形彩板,用它们拼成一个长方形,有多少种不同的拼法?
A.1152 B.384 C.28 D.12
【解析】本题实际上是想把1152分解成两个数的积。
1152=1×1152=2×576=3×384=4×288=6×192=8×144=9×128=12×96=16×72=18×64=24×48=32×36,故有12种不同的拼法。
解法二:(用排列组合知识求解)
由1152=27×32,那么现在我们要做的就是把这7个2和2个3分成两部分,当分配好时,那么长方形的长和宽也就固定了。
具体地: 1)当2个3在一起的时候,有8种分配方法(从后面有0个2一直到7个2); 2)当两个3不在一起时,有4种分配方法,分别是一个3后有0,1,2,3个2。故共有8+4=12种。
解法三:若1152=27×32,那么1152的所有乘积为1152因数的个数为(7+1)×(2+1)=24个,每两个一组,故共有24÷2=12组。
【例1】将450分拆成若干连续自然数的和,有多少种分拆办法?
A9 B8 C7 D10
【解析】整数分拆(严格地讲是自然数分拆)形式多样,解法也很多。
下面谈谈如何利用确定“中间数”法解将一个整数分拆成若干个连续数的问题。 那么什么是“中间数”呢?其实这里的“中间数”也就是平均数。有的“中间数”是答数中的一个,如:1、2、3、4、5中的“3”便是;也有的“中间数”是为了解题方便虚拟的,并不是答数中的一个,如:4、5、6、7这四个数的“中间数”即为“5.5”。由此我们可知,奇数个连续自然数的“中间数”是一个整数,而偶数个连续自然数的“中间数”则为小数,并且是某个数的一半。
一、 把一个自然数分拆成指定个数的连续数的和的问题。
例1、把2000分成25个连续偶数的和,这25个数分别什么?
分析与解:这道题如果一个一个地试,岂不是很麻烦,我们先求中间数:2000÷25=80,那么80的左边有12个数,右边也有12个数,再加上80本身,正好是25个数,我们又知相邻两个偶数相差2,那么这25个偶数中最小的便为:80—12×2=56,最大的为:80+12×2=104,故所求的这25个数为:56、58、………、80、………、102、104。
例2、把105分成10个连续自然数的和,这10个自然数分别是多少?
分析与解:我们仿照例1的办法先求中间数:105÷10=10.5,“10.5”这个数是小数,并不是自然数,很明显“10.5”不是所求的数中的一个,但我们可以把10.5“虚拟”为所求的数中的一个,这样也就是10.5左边有5个数,右边也有5个数,距离10.5最近的分别是10、11,这10个数分别是:6、7、8、9、10、(10.5)、11、12、13、14、15。
二、 把一个自然数分拆成若干个自然数的和的形式。
例3、84分拆成2个或2个以上连续自然数的和,有几种?分别是多少?
分析与解:我们先把84分解质因数,84=2×2×3×7由分解式可以看出,84的不同质因数有2、3、7,这就说明能把84分拆成2、3、7的倍数个不同连续自然数的和,但是我们必须明确,有的个数是不符合要求的,例如把84分拆成2个连续自然数的和,无论如何是办不到的,那么我们不妨把其分拆为3、7、8(2×2×2)个连续自然数的和。 分拆为3个连续自然数的和:(2×2×3×7)÷3=28 ,确定了“中间数”28,再依据例2的方法确定其它数,所以这三个数是27、28、29。 同理,分拆为7个连续自然数的和:(2×2×3×7)÷7=12 ,它们是9、10、11、12、13、14、15。 分拆为8(2×2×2)个连续自然数的和:(2×2×3×7)÷8=10.5 ,它们是7、8、9、10、(10.5)、11、12、13、14。其它情况均不符合要求。 再将此题引伸一步,怎样判断究竟有几种分拆方式呢?就84而言,它有三种分拆方法,下面我们看84的约数有:1、2、3、4、6、7、12、14、21、
28、42、84。其中大于1的奇约数恰有三个。于是可以得此结论:若一个整数(0除外)有n个大于1的奇约数,那么这个整数就有n种分拆成2个或2个以上连续自然数的和的方法。
450=2*3*3*5*5,大于1的奇约数为3,5,9,15,25,45,75,225一共8个,则共有8种拆分方法。
看帖回帖,多多支持楼主!点击注册 查找资料到上方\"搜索\"
回复
举报
离线亚亚
常务副会长
发帖13429 贡献值1984 交易券552 宣传单7 考友币0 加关注
发消息
只看该作者 6楼 发表于: 2011-07-21
行测数学运算16种题型之余数问题
关于“中国剩余定理”类型题目的另外解法
“中国剩余定理”解的题目其实就是“余数问题”,这种题目,也可以用倍数和余数的方法解决。
【例一】一个数被5除余2,被6除少2,被7除少3,这个数最小是多少?
解法:题目可以看成,被5除余2,被6除余4,被7除余4 。看到那个“被6除余4,被7除余4”了么,有同余数的话,只要求出6和7的最小公倍数,再加上4,就是满足后面条件的数了,6X7+4=46。下面一步试下46能不能满足第一个条件“一个数被5除余2”。不行的话,只要再46加上6和7的最小公倍数42,一直加到能满足“一个数被5除余2”。这步的原因是,42是6和7的最小公倍数,再怎么加都会满足
“被6除余4,被7除余4”的条件。
46+42=88
46+42+42=130
46+42+42+42=172
【例二】一个班学生分组做游戏,如果每组三人就多两人,每组五人就多三人,每组七人就多四人,问这个班有多少学生?
解法:题目可以看成,除3余2,除5余3,除7余4。没有同余的情况,用的方法是“逐步约束法”,就是从“除7余4的数”中找出符合“除5余3的数”,就是再7上一直加4,直到所得的数除5余3。得出数为18,下面只要在18上一直加7和5得最小公倍数35,直到满足“除3余2”
4+7=11
11+7=18
18+35=53
【例1】在国庆50周年仪仗队的训练营地,某连队一百多个战士在练习不同队形的转换。如果他们排成五列人数相等的横队,只剩下连长在队伍前面喊口令。如果他们排成七列这样的横队,只有连长仍然可以在前面
领队,如果他们排成八列,就可以有两个作为领队了。在全营排练时,营长要求他们排成三列横队。
以一哪项是最可以出现的情况?
A该连队官兵正好排成三列横队。
B除了连长外,正好排成三列横队。
C排成了整齐的三列横队,加有两人作为全营的领队。
D排成了整齐的三列横队,其中有一人是其他连队的
【解析】这个数符合除以5余1,除以7余1,除以8余2;
符合除以5余1,除以7余1的最小数为36,那么易知符合除以5余1,除以7余1,除以8余2为106,106÷3=35余1,所以选B。
【习题一】1到500这500个数字, 最多可取出多少个数字, 保证其取出的任意三个数字之和不是7的倍数。
【解析】
每7个数字1组,余数都是1,2,3,4,5,6,0,要使得三个数字之和不是7的倍数,那么其余数之和就不是7的倍数。
我们应该挑选 0,1,2,或者0,5,6
因为7/3=2 也就是说最大的数字不能超过2 ,例如 如果是1,2,3 那么 我们可以取3,3,1 这样的
余数,其和就是7
500/7=71 余数是3, 且剩下的3个数字余数是1,2,3
要得去得最多,那么我们取0,1,2比较合适 因为最后剩下的是1,2,3 所以这样就多取了2个
但是还需注意 0 不能取超过2个 如果超过2个 是3个以上的话 3个0就可以构成7的倍数 0也能被7整除
所以答案是71个1,2 和剩下的一组1,2 外加2个0
71×2+2+2=146
看帖回帖,多多支持楼主!点击注册 查找资料到上方\"搜索\"
回复
举报
离线亚亚
常务副会长
发帖13429 贡献值1984 交易券552 宣传单7 考友币0 加关注
发消息
只看该作者 7楼 发表于: 2011-07-21
行测数学运算16种题型之剩余定理
【例1】一个数被3除余1,被4除余2,被5除余4,这个数最小是几?
【解析】题中3、4、5三个数两两互质。
则〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。
为了使20被3除余1,用20×2=40;
使15被4除余1,用15×3=45;
使12被5除余1,用12×3=36。
然后,40×1+45×2+36×4=274,
因为,274>60,所以,274-60×4=34,就是所求的数。
【例2】一个数被3除余2,被7除余4,被8除余5,这个数最小是几?在1000内符合这样条件的数有几个.?
【解析】题中3、7、8三个数两两互质。
则〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。
为了使56被3除余1,用56×2=112;
使24被7除余1,用24×5=120。
使21被8除余1,用21×5=105;
然后,112×2+120×4+105×5=1229,
因为,1229>168,所以,1229-168×7=53,就是所求的数。
再用(1000-53)/168得5, 所以在1000内符合条件的数有6个.
【例3】一个数除以5余4,除以8余3,除以11余2,求满足条件的最小的自然数。
【解析】题中5、8、11三个数两两互质。
则〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。
为了使88被5除余1,用88×2=176;
使55被8除余1,用55×7=385;
使40被11除余1,用40×8=320。
然后,176×4+385×3+320×2=2499,
因为,2499>440,所以,2499-440×5=299,就是所求的数。
【例4】有一个年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人 ?
【解析】题中9、7、5三个数两两互质。
则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
为了使35被9除余1,用35×8=280;
使45被7除余1,用45×5=225;
使63被5除余1,用63×2=126。
然后,280×5+225×1+126×2=1877,
因为,1877>315,所以,1877-315×5=302,就是所求的数。
关于“中国剩余定理”类型题目的另外解法
“中国剩余定理”解的题目其实就是“余数问题”,这种题目,也可以用倍数和余数的方法解决。
【例一】一个数被5除余2,被6除少2,被7除少3,这个数最小是多少?
解法:题目可以看成,被5除余2,被6除余4,被7除余4 。看到那个“被6除余4,被7除余4”了么,有同余数的话,只要求出6和7的最小公倍数,再加上4,就是满足后面条件的数了,6X7+4=46。下面一步试下46能不能满足第一个条件“一个数被5除余2”。不行的话,只要再46加上6和7的最小公倍数42,一直加到能满足“一个数被5除余2”。这步的原因是,42是6和7的最小公倍数,再怎么加都会满足
“被6除余4,被7除余4”的条件。
46+42=88
46+42+42=130
46+42+42+42=172
【例二】一个班学生分组做游戏,如果每组三人就多两人,每组五人就多三人,每组七人就多四人,问这个班有多少学生?
解法:题目可以看成,除3余2,除5余3,除7余4。没有同余的情况,用的方法是“逐步约束法”,就是从“除7余4的数”中找出符合“除5余3的数”,就是再7上一直加4,直到所得的数除5余3。得出数为18,下面只要在18上一直加7和5得最小公倍数35,直到满足“除3余2”
4+7=11
11+7=18
18+35=53
【例1】在国庆50周年仪仗队的训练营地,某连队一百多个战士在练习不同队形的转换。如果他们排成五列人数相等的横队,只剩下连长在队伍前面喊口令。如果他们排成七列这样的横队,只有连长仍然可以在前面领队,如果他们排成八列,就可以有两个作为领队了。在全营排练时,营长要求他们排成三列横队。
以一哪项是最可以出现的情况?
A该连队官兵正好排成三列横队。
B除了连长外,正好排成三列横队。
C排成了整齐的三列横队,加有两人作为全营的领队。
D排成了整齐的三列横队,其中有一人是其他连队的
【解析】这个数符合除以5余1,除以7余1,除以8余2;
符合除以5余1,除以7余1的最小数为36,那么易知符合除以5余1,除以7余1,除以8余2为106,106÷3=35余1,所以选B。
【习题一】1到500这500个数字, 最多可取出多少个数字, 保证其取出的任意三个数字之和不是7的倍数。
【解析】
每7个数字1组,余数都是1,2,3,4,5,6,0,要使得三个数字之和不是7的倍数,那么其余数之和就不是7的倍数。
我们应该挑选 0,1,2,或者0,5,6
因为7/3=2 也就是说最大的数字不能超过2 ,例如 如果是1,2,3 那么 我们可以取3,3,1 这样的余数,其和就是7
500/7=71 余数是3, 且剩下的3个数字余数是1,2,3
要得去得最多,那么我们取0,1,2比较合适 因为最后剩下的是1,2,3 所以这样就多取了2个
但是还需注意 0 不能取超过2个 如果超过2个 是3个以上的话 3个0就可以构成7的倍数 0也能被7整除
所以答案是71个1,2 和剩下的一组1,2 外加2个0
71×2+2+2=146
看帖回帖,多多支持楼主!点击注册 查找资料到上方\"搜索\"
回复
举报
离线亚亚
常务副会长
发帖13429 贡献值1984 交易券552 宣传单7 考友币0 加关注
发消息
只看该作者 8楼 发表于: 2011-07-21
行测数学运算16种题型之传球问题
例:四人进行篮球传接球练习,要求每人接球后再传给别人。开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有多少种传球方式?
A.60种 B.65种 C.70种 D.75种
【解析一】五次传球传回甲,中间将经过四个人,将其分为两类:
第一类:传球的过程中不经过甲,甲→___→___→___→___→甲___→甲,共有方法3×2×2×2=24种
第二类:传球的过程中经过甲,
①甲→___→___→甲→___→甲,共有方法3×2×1×3=18种
②甲→___→甲→___→___→甲,共有方法3×1×3×2=18种
根据加法原理:共有不同的传球方式24+18+18=60种
【解析二】注意到:N次传球,所有可能的传法总数为3(每次传球有3种方法),第N次传回甲手中的可能性就是第N-1次不在甲手中的可能性。
第N次传球
传球的方法
球在甲手中的传球方法
球不在甲手中的传球方
1
3
0
3
2
9
3
6
3
27
6
21
4
81
21
60
5
243
60
183
从表中可知,经过5次传球后,球仍回甲手的方法共有60种,故选A项。
【解析三】我们很容易算出来,四个人传五次球一共有35=243种传法,由于一共有4个人,所以平均传给每一个人的传法是243÷4=60.75,最接近的就是60,选择A。
传球问题核心注释
这道传球问题是一道非常复杂麻烦的排列组合问题。【解析一】是最直观、最容易理解的,但耗时耗力并且容易错,稍微应运数字计算量可能陡增;【解析二】操作性强,可以解决这种类型的种问题,但理解起来要求比较高,具体考场之上也比较耗时;【解析二】不免投机取巧,但最有效果(根据对称性很容易判断结果应该是3的倍数,如果答案只有一个3的倍数,便能快速得到答案),也给了一个启发—
传球问题核心公式
N个人传M次球,记X=(N-1)M/N,则与X最接近的整数为传给“非自己的某人”的方法数,与X第二接近的整数便是传给自己的方法数。大家牢记一条公式,可以解决此类至少三人传球的所有问题。
比如说上例之中,X=(4-1)5、4=60.75,最接近的整数是61,第二接近的整数是60,所以传回甲自己的方法数为60种,而传给乙(或者丙、丁)的方法数为61。
题:某人去A、B、C、D、E五个城市旅游,第一天去A城市,第七天到E城市,如果他今天在某个城市,那么第二天肯定会离开这个城市去另外一个城市,那么他一共有多少种旅游行程安排的方式?
A.204 B.205 C.819 D.820
【答案】C。相当于五个人传六次球,根据“传球问题核心公式”,X=(5-1)6/5=819.2,与之最接近的是819,第二接近的是820。因此若第七天回到A城市则有820种方法,去另外一个城市则有819种方法。
看帖回帖,多多支持楼主!点击注册 查找资料到上方\"搜索\"
回复
举报
离线亚亚
常务副会长
发帖13429 贡献值1984 交易券552 宣传单7 考友币0 加关注
发消息
只看该作者 9楼 发表于: 2011-07-21
行测数学运算16种题型之工程问题
1.由于工程问题解题中遇到的不是具体数量,与学生的习惯性思维相逆,同学们往往感到很抽象,不易理解。
2.比较难的工程问题,其数量关系一般很隐蔽,工作过程也较为复杂,往往会出现多人多次参与工作的情况,数量关系难以梳理清晰。
3.一些较复杂的分数应用题、流水问题、工资分配、周期问题等,其实质也是工程问题,但同学们易受其表面特征所迷惑,难以清晰分析、理解其本质结构特征是工程问题,从而未按工程问题思路解答,误入歧途。
工程问题是从分率的角度研究工作总量、工作时间和工作效率三个量之间的关系,它们有如下关系:工作
效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率。那我们应该怎样分析工程问题呢?
1.深刻理解、正确分析相关概念。
对于工程问题,要深刻理解工作总量、工作时间、工作效率,简称工总、工时、工效。通常工作总量的具体数值是无关紧要的,一般利用它不变的特点,把它看作单位“1”;工作时间是指完成工作总量所需的时间;工作效率是指单位时间内完成的工作量,即用单位时间内完成工作总量的几分之一或几分之几来表示工作效率。
分析工程问题数量关系时,运用画示意图、线段图等方法,正确分析、弄请题目中哪个量是工作总量、工作时间和工作效率。
2.抓住基本数量关系。
解题时,要抓住工程问题的基本数量关系:工作总量=工作效率×工作时间,灵活地运用这一数量关系提高解题能力。这是解工程问题的核心数量关系。
3.以工作效率为突破口。
工作效率是解答工程问题的要点,解题时往往要求出一个人一天(或一个小时)的工作量,即工作效率(修路的长度、加工的零件数等)。如果能直接求出工作效率,再解答其他问题就较容易,如果不能直接求出工作效率,就要仔细分析单独或合作的情况,想方设法求出单独做的工作效率或合作的工作效率。
工程问题中常出现单独做、几人合作或轮流做的情况,分析时要梳理、理顺工作过程,抓住完成工作的几个过程或几种变化,通过对应工作的每一阶段的工作量、工作时间来确定单独做或合作的工作效率。也常常将问题转化为由甲(或乙)完成全部工程(工作)的情况,使问题得到解决
要抓住题目中总的工作时间比、工作效率比、工作量比,及抓住隐蔽的条件来确定工作效率,或者确定工
作效率之间的关系。
总之,单独的工作效率或合作的工作效率是解答工程问题的关键。
【例1】一件工作,甲单独做12小时完成,乙单独做9小时可以完成。如果按照甲先乙后的顺序,每人每次1小时轮流进行,完成这件工作需要几小时?
【解析】设这件工作为“1”,则甲、乙的工作效率分别是1/12和1/9。按照甲先乙后的顺序,每人每次1小时轮流进行,甲、乙各工作1小时,完成这件工作的7/36,甲、乙这样轮流进行了5次,即10小时后,完成了工作的35/36,还剩下这件工作的1/36,剩下的工作由甲来完成,还需要1/3小时,因此完成这件工作需要31/3小时。
【例2】一份稿件,甲、乙、丙三人单独打各需20、24、30小时。现在三人合打,但甲因中途另有任务提前撤出,结果用12小时全部完成。那么,甲只打了几小时?
【解析】设打这份稿件的总工作量是“1”,则甲、乙、丙三人的工作效率分别1/20、1/24和1/30。在甲中途撤出前后,其实乙、丙二人始终在打这份稿件,乙、丙12小时打了这份稿件的9/10,还剩下稿件的1/10,这就是甲打的。所以,甲只打了2小时。
【例3】 一件工程,甲、乙合作6天可以完成。现在甲、乙合作2天后,余下的工程由乙独做又用8天正好 做完。这件工程如果由甲单独做,需要几天完成?
【解析】甲、乙合作2天,甲2乙2,剩下应该是甲4乙4=乙8.则甲=乙,所以甲单独完成需要12天。
【例4 】一个游泳池,甲管放满水需6小时,甲、乙两管同时放水,放满需4小时。如果只用乙管放水,则放满需:
A 8小时 B 10小时 C 12小时 D 14小时 (2001年A类真题)
【解析】:设游泳池放满水的工作量为1,甲管放满水需6小时,则甲每小时完成工作量的1/6甲、乙两管同时放水,放满需4小时,则甲乙共同注水,每小时可注游泳池的1/4,则乙每小时注水的量为1/4-1/6=1/12,则如果只用乙管放水,则放满需12小时。
另法:甲乙同时放水需要4小时=甲4乙4=甲6 则乙=0.5甲,需要12小时。
【例5】 一个水池有两个排水管甲和乙,一个进水管丙.若同时开放甲、丙两管,20小时可将满池水排空;若同时开放乙、丙两水管,30小时可将满池水排空,若单独开丙管,60小时可将空池注满.若同时打开甲、乙、丙三水管,要排空水池中的满池水,需几小时?
【解析】工程问题最好采用方程法。
由题可设甲X小时排空池水,乙Y小时排空池水,则可列方程组
1/X-1/60=1/20 解得X=15
1/Y-1/60=1/30 解得Y=20
则三个水管全部打开,则需要1÷(1/15+1/20-1/60)=10
所以,同时开启甲、乙、丙三水管将满池水排空需10小时。
【例6】 铺设一条自来水管道,甲队单独铺设8天可以完成,而乙队每天可铺设50米。如果甲、乙两队同时铺设,4天可以完成全长的2/3,这条管道全长是多少米?
A 1000米 B 1100米 C 1200米 D 1300米 (2002年B类真题)
【解析】设乙需要X天完成这项工程,依题意可列方程
(1/8+1/X)×4=2/3
解得X=24
也即乙每天可完成总工程的1/24,也即50米,所以管道总长为1200米。
所以,正确答案为C。
另法:甲4天完成1/2,乙4天完成200米=1/6,全长1200米。
【例7】一项工程甲乙丙合作5天完成,现在三人合作2天后,甲调走,乙丙继续合作5天后完工,问甲一人独做需几天完工?
【解析】三人合作2天完成2/5,剩余3/5需要乙丙5天,效率为3/25,则甲的效率为1/5-3/25=2/25,所以甲单独做需要12.5天。
【例8】制作一批零件,甲车间要10天完成;茹果甲车间和乙车间一起做只要6天就能完成,乙车间和丙车间一起做需要8天。现在三个车间一起做,完成后发现甲比乙多做2400个。丙制作零件多少个?
【解析】效率比 甲:乙=3:2,则乙单独需要15天,则乙:丙=8:7,则甲:乙:丙=12:8:7,假设丙做了7X个,则甲比乙多做4X=2400,7X=4200个。
【例9】蓄水池有甲丙两条进水管和乙丁两台排水管。要注满一池水,单开甲管要3小时,单开丙管要5小时。要排光一池水,单开乙管要4小时,单开丁管要6小时。现知池内有1/6池水,如果按甲乙丙丁、甲乙丙丁……的顺序轮流各开一小时,问多少时间后,水开始溢出水池?
【解析】甲乙丙丁四条水管各开一个小时以后,也就是一个轮回,水池的水量是:
(1/3+1/5)-(1/4+1/6)=7/60;
当N个轮回结束,水池水量超过2/3时候,再单独开甲就要有水溢出。
1/6+N*7/60=2/3 解得N=4.。。2,取N=5
1-1/6-5*7/60=1/4 需要3/4小时。则总时间为4*5+3/4=20又3/4
看帖回帖,多多支持楼主!点击注册 查找资料到上方\"搜索\"
回复
举报
离线亚亚
常务副会长
发帖13429 贡献值1984 交易券552 宣传单7 考友币0 加关注
发消息
只看该作者 10楼 发表于: 2011-07-21
行测数学运算16种题型之爬楼梯问题
【例题】十阶楼梯,小张每次只能走一阶或者两阶,请问走完此楼梯共有多少种方法?
A.55 B.67 C.74 D.89
【答案】D
看帖回帖,多多支持楼主!点击注册 查找资料到上方\"搜索\"
回复
举报
离线亚亚
常务副会长
发帖13429 贡献值1984 交易券552 宣传单7 考友币0 加关注
发消息
只看该作者 11楼 发表于: 2011-07-21
行测数学运算16种题型之容斥原理问题
核心公式:
(1)两个集合的容斥关系公式:A+B=A∪B+A∩B
(2)三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C
【例1】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有:
A.22人 B.28人 C.30人 D.36人
【解析】设A=喜欢看球赛的人(58),B=喜欢看戏剧的人(38),C=喜欢看电影的人(52)
A∩B=既喜欢看球赛的人又喜欢看戏剧的人(18)
B∩C=既喜欢看电影又喜欢看戏剧的人(16)
A∩B∩C=三种都喜欢看的人(12)
A∪B∪C=看球赛和电影、戏剧至少喜欢一种(100)
根据公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C
C∩A=A+B+C-(A∪B∪C+A∩B+B∩C-A∩B∩C)
=148-(100+18+16-12)=26
所以,只喜欢看电影的人=C-B∩C-C∩A+A∩B∩C
=52-16-26+12
=22
【例2】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是( )。
A.22 B.18 C.28 D.26
【解析】设A=第一次考试中及格的人(26),B=第二次考试中及格的人(24)
显然,A+B=26+24=50;A∪B=32-4=28,
则根据公式A∩B=A+B-A∪B=50-28=22
所以,答案为A。
【例3】某单位有青年员工85人,其中68人会骑自行车,62人会游泳,既不会骑车又不会游泳的有12人,则既会骑车又会游泳的有( )人
A.57 B.73 C.130 D.69
【解析】设A=会骑自行车的人(68),B=会游泳的人(62)
显然,A+B=68+62=130;A∪B=85-12=73,
则根据公式A∩B=A+B-A∪B=130-73=57
所以,答案为A。
【例4】电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。两个频道都没看过的有多少人?
【解析】设A=看过2频道的人(62),B=看过8频道的人(34)
显然,A+B=62+34=96;A∩B=两个频道都看过的人(11)
则根据公式A∪B=A+B-A∩B=96-11=85
所以,两个频道都没有看过的人数=100-85=15
所以,答案为15。
看帖回帖,多多支持楼主!点击注册 查找资料到上方\"搜索\"
回复
举报
离线亚亚
常务副会长
发帖13429 贡献值1984 交易券552 宣传单7 考友币0 加关注
发消息
只看该作者 12楼 发表于: 2011-07-21
行测数学运算16种题型之年龄问题
数学运算主要考查应试者解决算术问题的能力。在这种题型中,每道试题中呈现一道算术式子,或者是表述数字关系的一段文字,要求考生迅速、准确地计算出答案。在解答此类试题时,关键在于找捷径和简便方法。由于运算只涉及加、减、乘、除四则运算,比较简单,如果有足够的时间给每一位考生的话,大家几乎都能打高分甚至是满分。但公务员考试行测的一大特点就是题量大时间紧,在这种情况下,个体的差异就体现在运算的速度与准确性上,只有通过巧用计算方法提高运算速度才能在考试中获得优势。
数学运算的简便解题方法有很多,如数学公式运算法、凑整计算法、基准数法、提取公因式法等等,根据常考的试题,还总结出一些专题,比如年龄问题、植树问题、行程问题等等,每一类题也有各自不一样的解法,我们会一一给大家讲解,今天,我们主要来讲一讲年龄问题的解题方法。
求解年龄问题的关键是“年龄差不变”。
几年前的年龄差和几年后的年龄差是相等的,即变化前的年龄差=变化后的年龄差。解题时将年龄的其他关系代入上述等式即可求解。
已知两个人或若干个人的年龄,求他们年龄之间的某种数量关系等等。年龄问题又往往是和倍、差倍、和差等问题的综合。它有一定的难度,因此解题时需抓住其特点。
年龄问题的主要特点是:大小年龄差是个不变的量,而年龄的倍数却年年不同。我们可以抓住差不变这个特点,再根据大小年龄之间的倍数关系与年龄之和等条件,解答这类应用题。
解答年龄问题的一般方法是:
几年后年龄=大小年龄差÷倍数差-小年龄,
几年前年龄=小年龄-大小年龄差÷倍数差。
介绍几道例题,帮助大家掌握年龄问题的解题方法:
【例题1】今年哥弟两人的岁数加起来是55岁,曾经有一年,哥哥的岁数是今年弟弟的岁数,那时哥哥的素数恰好是弟弟的两倍,问哥哥今年年龄是多大?( )
A.33 B.22 C.11 D.44
【答案及解析】A 设今年哥哥X岁,则今年弟弟是55-X岁,过去某年哥哥岁数是55-X岁,那是在X-(55-X)即2X-55年前,当时弟弟岁数是(55-X)-(2X-55)即110-3X。列方程为 55-X=2(110-3X)
55-X=220-6X
6X- X=220-55
5X=165
X=33
【例题2】爸爸、哥哥、妹妹现在的年龄和是64岁。当爸爸的年龄是哥哥的3倍时,妹妹是9岁;当哥哥的年龄是妹妹的2倍时,爸爸34岁。现在爸爸的年龄是多少岁?()
A.34 B.39 C.40 D.42
【答案及解析】C。
解法一:用代入法逐项代入验证。解法二,利用“年龄差”是不变的,列方程求解。设爸爸、哥哥和妹妹的现在年龄分别为:x、y和z。那么可得下列三元一次方程:x+y+z=64;x-(z-9)=3[y-(z-9)];y-(x-34)=2[z-(x-34)]。可求得x=40。
【例题3】1998年,甲的年龄是乙的年龄的4倍。2002年,甲的年龄是乙的年龄的3倍。问甲、乙二人
2000年的年龄分别是多少岁?( )
A.34岁,12岁 B.32岁,8岁 C.36岁,12岁 D.34岁,10岁
【答案及解析】D。
这是一道年龄问题,最重要的是掌握“年龄差不变”这一知识点。
假设甲乙两人2000年的年龄分别是x、y岁,那么1998年他们就分别是(x-2)岁、(y-2)岁,2002年分别是(x+2)岁、(y+2)岁,根据题意可以列方程:
(x+2)=(y+2)×3,
(x-2)=(y-2)×4,
得出:x=34,y=10
所以甲乙二人2000年的年龄分别是34岁和10岁。
【例题4】10年前田靶的年龄是她女儿的7倍,15年后田靶的年龄是她女儿的2倍,问女儿现在的年龄是多少岁?()
A.45 B.15 C.30 D.10
【答案及解析】B 15年后田靶的年龄是女儿的2倍,即两人年龄的差等于女儿当时的年龄,所以,两人年龄的差等于女儿10年前的年龄加25。
10年前田靶年龄是女儿的7倍,所以两人年龄的差等于女儿当时年龄的6(=7-1)倍。
由于年龄的差是不变的,所以女儿10年前的年龄的5(=6-1)倍等于25,女儿当时的年龄为:25/5=5(岁)。
现在为:5+10=15(岁)
故B项是正确选项
通过上面几道例题,我们了解了年龄问题的基本特点,以及年龄问题的一些解题方法。
其实数学运算的考查点并非在于应试者的知识积累,而在于应试者的反应速度及应变能力。因此数学运算的题目并非是要求应试者用复杂的数学公式来进行运算(尽管能最终算出结果),而是要求应试者根据题目所给条件,巧妙运用简便的方法来进行解答。今天给大家介绍了年龄问题的解题方法,这也是数学运算中一种比较常见的题型,希望大家能掌握其中的要点,做到灵活运用。其他的解题方法在以后我们还会一一介绍,建议大家在学习解题方法的同时,也要注意基础知识的积累,多做练习,把各种解题方法运用得炉火纯青。
看帖回帖,多多支持楼主!点击注册 查找资料到上方\"搜索\"
回复
举报
离线亚亚
常务副会长
发帖13429 贡献值1984 交易券552 宣传单7 考友币0 加关注
发消息
只看该作者 13楼 发表于: 2011-07-21
行测数学运算16种题型之抽屉原理问题
抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。
假设有3个苹果放入2个抽屉中,则必然有一个抽屉中有2个苹果,她的一般模型可以表述为:
第一抽屉原理:把(mn+1)个物体放入n个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。
若把3个苹果放入4个抽屉中,则必然有一个抽屉空着,她的一般模型可以表述为:
第二抽屉原理:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
制造抽屉是运用原则的一大关键
例1、一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的?
A.12
B.13
C.15
D.16
【解析】根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B。
例2、从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?
A.7 B.10 C.9 D.8
【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。另外,还有2个不能配对的数是{6}{7}。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D。
例3、有红、黄、蓝、白珠子各10粒,装在一只袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒?()
A. 3 B. 4 C. 5 D. 6
【解析】这是一道典型的抽屉原理,只不过比上面举的例子复杂一些,仔细分析其实并不难。解这种题时,要从最坏的情况考虑,所谓的最不利原则,假定摸出的前4粒都不同色,则再摸出的1粒(第5粒)一定可以保证可以和前面中的一粒同色。因此选C。
传统的解抽屉原理的方法是找两个关键词,“保证”和“最少”。
保证:5粒可以保证始终有两粒同色,如少于5粒(比如4粒),我们取红、黄、蓝、白各一个,就不能“保证”,所以“保证”指的是要一定没有意外。
最小:不能取大于5的,如为6,那么5也能“保证”,就为5。
例4、从一副完整的扑克牌中至少抽出( )张牌.才能保证至少 6 张牌的花色相同。
A. 21
B. 22
C. 23
D. 24
解析:2+5*4+1=23
看帖回帖,多多支持楼主!点击注册 查找资料到上方\"搜索\"
回复
举报
离线亚亚
常务副会长
发帖13429 贡献值1984 交易券552 宣传单7 考友币0 加关注
发消息
只看该作者 14楼 发表于: 2011-07-21
行测数学运算16种题型之比例问题
数学运算之比例问题专题
关键提示:
比例问题是公务员考试必考题型,也是数学运算中最重要的题型;
解决好比例问题,关键要从两点入手:第一,“和谁比”;第二,“增加或下降多少”。
【例1 】 b比a增加了20%,则b是a的多少? a又是b的多少呢?
【解析】可根据方程的思想列式得 a×(1+20%)=b,所以b是a的1.2倍。
A/b=1/1.2=5/6,所以a 是b的5/6。
【例2】 养鱼塘里养了一批鱼,第一次捕上来200尾,做好标记后放回鱼塘,数日后再捕上100尾,发现有标记的鱼为5尾,问鱼塘里大约有多少尾鱼?
A.200 B.4000 C.5000 D.6000 (2004年中央B类真题)
解析:方程法:可设鱼塘有X尾鱼,则可列方程,100/5=X/200,解得X=4000,选择B。
【例3 】 2001年,某公司所销售的计算机台数比上一年度上升了20%,而每台的价格比上一年度下降了20%。如果2001年该公司的计算机销售额为3000万元,那么2000年的计算机销售额大约是多少?
A.2900万元 B.3000万元 C.3100万元 D.3300万元(2003年中央A类真题)
【解析】方程法:可设2000年时,销售的计算机台数为X,每台的价格为Y,显然由题意可知,2001年的计算机的销售额=X(1+20%)Y(1-20%),也即3000万=0.96XY,显然XY≈3100。答案为C。
特殊方法:对一商品价格而言,如果上涨X后又下降X,求此时的商品价格原价的多少?或者下降X再上涨X,求此时的商品价格原价的多少?只要上涨和下降的百分比相同,我们就可运用简化公式,1-X 。但如果上涨或下降的百分比不相同时则不可运用简化公式,需要一步一步来。对于此题而言,计算机台数比上一年度上升了20%,每台的价格比上一年度下降了20%,因为销售额=销售台数×每台销售价格,所以根据乘法的交换律我们可以看作是销售额上涨了20%又下降了20%,因而2001年是2000年的1-(20%) =0.96,2001年的销售额为3000万,则2000年销售额为3000÷0.96≈3100。
【例4 】 生产出来的一批衬衫中大号和小号各占一半。其中25%是白色的,75%是蓝色的。如果这批衬衫总共有100件,其中大号白色衬衫有10件,问小号蓝色衬衫有多少件?
A.15 B.25 C.35 D.40 (2003年中央A类真题)
【解析】这是一道涉及容斥关系(本书后面会有专题讲解)的比例问题。
根据已知 大号白=10件,因为大号共50件,所以,大号蓝=40件;
大号蓝=40件,因为蓝色共75件,所以,小号蓝=35件;
此题可以用另一思路进行解析(多进行这样的思维训练,有助于提升解题能力)
大号白=10件,因为白色共25件,所以,小号白=15件;
小号白=15件,因为小号共50件,所以,小号蓝=35件;
所以,答案为C。
【例5】 某企业发奖金是根据利润提成的,利润低于或等于10万元时可提成10%;低于或等于20万元时,高于10万元的部分按7.5%提成;高于20万元时,高于20万元的部分按5%提成。当利润为40万元时,应发放奖金多少万元?
A.2 B.2.75 C.3 D.4.5 (2003年中央A类真题)
【解析】这是一个种需要读懂内容的题型。根据要求进行列式即可。
奖金应为 10×10%+(20-10)×7.5%+(40-20)×5%=2.75
所以,答案为B。
【例6】 某校在原有基础(学生700人,教师300人)上扩大规模,现新增加教师75人。为使学生和教师比例低于2:1,问学生人数最多能增加百分之几?
A.7% B.8% C.10.3% D.115% (2003年中央A类真题)
【解析】根据题意,新增加教师75人,则学生最多可达到(300+75)×2=750人,学生人数增加的比列则为 (750-700)÷700≈7.1%
所以,选择A。
【例7】 某企业去年的销售收入为1000万元,成本分生产成本500万元和广告费200万元两个部分。若年利润必须按P%纳税,年广告费超出年销售收入2%的部分也必须按P%纳税,其它不纳税,且已知该企业去年共纳税120万元,则税率P%为
A.40% B.25% C.12% D.10% (2004年江苏真题)
【解析】选用方程法。根据题意列式如下:
(1000-500-200)×P%+(200-1000×2%)×P%=120
即 480×P%=120
P%=25%
所以,答案为B。
【例8】 甲、乙两盒共有棋子108颗,先从甲盒中取出 放人乙盒,再从乙盒取出 放回甲盒,这时两盒的棋子数相等,问甲盒原有棋子多少颗?
A.40颗 B.48颗
C.52颗 D.60颗 (2004年浙江真题)
『答案』 B
【解析】 此题可用方程法,设甲盒有X颗,乙盒有Y颗,则列方程组如下,参见辅助资料。此题运用直接代入法或逆推法更快捷。
【例 9 】甲乙两名工人8小时共加736个零件,甲加工的速度比乙加工的速度快30%,问乙每小时加工多少个零件?
A.30个 B.35个 C.40个 D.45个 (2002年A类真题)
【解析】选用方程法。设乙每小时加工X个零件,则甲每小时加工1.3X个零件,并可列方程如下:
(1+1.3X)×8=736
X=40
所以,选择C。
【例 10】已知甲的12%为13,乙的13%为14,丙的14%为15,丁的15%为16,则甲、乙、丙、丁4个数中最大的数是:
A.甲 B.乙 C.丙 D.丁 (2001年中央真题)
【解析】显然甲=13/12%;乙=14/13%;丙=15/14%;丁=16/15%,显然最大与最小就在甲、乙之间,所以比较甲和乙的大小即可,甲/乙=13/12%/16/15%>1,
所以,甲>乙>丙>丁,选择A。
【例11】某单位召开一次会议,会期10天。后来由于议程增加,会期延长3天,费用超过了预算,仅食宿费一项就超过预算20%,用了6000元。已知食宿费用预算占总预算的25%,那么,总预算费用是:
A.18000元 B.20000元 C.25000元 D.30000元 (2001年中央真题)
【解析】设总预算为X,则可列议程为,
25%X=6000÷(1+20%),解得X=20000
所以,答案为B。
【例12】 一种收录机,连续两次降价10%后的售价是405元,那么原价是:
A.490元 B.500元 C.520元 D.560元 (2001年中央真题)
【解析】连续涨(降)价相同幅度的基本公式如下:
a =c a表示涨(降)价前的价格;b表示涨(降)价的百分比;c表示涨(降)价后的价格;n连续涨(降)价的年数。
如果设原价为X,那么由以上公式可列如下方程:
X =405,解得X=500
所以,答案为B。此题可以选择代入法快速得到答案。
【例13】某企业1999年产值的20%相当于1998年产值的25%,那么,1999年的产值与1998年相比:
A.降低了5% B.提高了5% C.提高了20% D.提高了25%(2001年中央真题)
【解析】此题可采用直接作比的方法。设1998年的产值为a,1999年的产值为b,则根据题意事列方程,a25%=b20%,则1999年的产值与1998年的比=b/a=25%/20%=1.25,也即1999年的产值比1998年提高了25%。
所以,答案为D。
【例 14】 某人用4410元买了一台电脑,其价格是原来定价相继折扣了10%和2%后的价格,则电脑原来定价是
A.4950元 B.4990元 C.5000元 D.5010元 (2000年中央真题)
【解析】采用方程法即可,设电脑原来定价是X,则可列方程为
X×(1-10%)×(1-2%)=4410,解得X=5000。
所以,正确答案为C。
注,此题不能用例11的基本公式,因为降价幅度不同。
【例15】某机关共有干部、职工350人,其中55岁以上共有70人。现拟进行机构改革,总体规模压缩为180人,并规定55岁以上的人裁减比例为70%。请问55岁以下的人裁减比例约是多少?
A.51% B.43% C.40% D.34% (2000年中央真题)
解析:设55岁以下的人裁减比例为X,则可列方程为:
70×(1-70%)+(350-70)×(1-X)=180
解得X≈43%
所以,正确答案为B。
【例16】某储户于1999年1月1 日存人银行60000元,年利率为2.00%,存款到期日即2000年1月1 日将存款全部取出,国家规定凡1999年11月1日后孳生的利息收入应缴纳利息税,税率为20%,则该储户实际提取本金合计为
A.61 200元 B.61 160元 C.61 000元 D.60 040元
【解析】如不考虑利息税,则1999年1月1 日存款到期日即2000年1月1可得利息为60000×2%=1200,
也即100元/月,但实际上从1999年11月1日后要收20%利息税,也即只有2个月的利息收入要交税,税额=200×20%=40元
所以,提取总额为60000+1200-40=61160,正确答案为B。1/1.2=5/6。再比如,一件商品的价格为a元,第一次调价时上涨了50%,第二次调价时又下降了80%,问现在的价格是调价前的多少?(30%)像这样的反复变化的比例关系并无难点,关键是一定要弄清楚和谁比增加或者下降,现在是多少,以上题为例,商品的价格为a元,第一次调价时上涨了50%,则此时商品的价格为1.5a元,第二次调价时又下降了80%,则此时的价格为1.5a×(1-80%)=0.3a元。
【例17】 甲、乙、丙三人买书共花费96元钱,已知丙比甲多花16元,乙比甲多花8元,则甲、乙、丙三人花的钱的比是( )。(2002年B类真题)
A.3:5:4 B.4:5:6 C.2:3:4 D.3:4:5
【解析】我们通常采用方程法,即设甲的花费为X元,则3X+16+8=96,则X=24,尽而可算出比例关系为3:4:5即为选项D。这里请注意,我们在进行数学运算的答题时应尽量避免采用方程法,应将这一方程运算过程用习惯性思维替代,具体思维过程如下,用96-16-8=72,所得到就应该是3倍甲的花费,由此得到甲的花费是24元。
【例18】 2001年,某公司所销售的计算机台数比上一年度上升了20%,而每台的价格比上一年度下降了20%。如果2001年该公司的计算机销售额为3000万元,那么2000年的计算机销售额大约是多少 ( ) ?
A.2900万元 B.3000万元 C.3100万元 D.3300万元
【解析】对一商品价格而言,如果上涨X后又下降X,求此时的商品价格原价的多少?或者下降X再上涨X,求此时的商品价格原价的多少?只要上涨和下降的百分比相同,我们就可运用简化公式,1-X 。但如果上涨或下降的百分比不相同时则不可运用简化公式,需要一步一步来。对于此题而言,计算机台数比上一年度上升了20%,每台的价格比上一年度下降了20%,因为销售额=销售台数×每台销售价格,所以根据乘法的交换律我们可以看
作是销售额上涨了20%又下降了20%,因而2001年是2000年的1-(20%) =0.96,2001年的销售额为3000万,则2000年销售额为3000÷0.96≈3100,所以选择C。
看帖回帖,多多支持楼主!点击注册 查找资料到上方\"搜索\"
回复
举报
离线亚亚
常务副会长
发帖13429 贡献值1984 交易券552 宣传单7 考友币0 加关注
发消息
只看该作者 15楼 发表于: 2011-07-21
行测数学运算16种题型之利润问题
商店出售商品,总是期望获得利润.例如某商品买入价(成本)是50元,以70元卖出,就获得利润70-50=20(元).通常,利润也可以用百分数来说,20÷50=0.4=40%,我们也可以说获得 40%的利润.因此
利润的百分数=(卖价-成本)÷成本×100%.
卖价=成本×(1+利润的百分数).
成本=卖价÷(1+利润的百分数).
商品的定价按照期望的利润来确定.
定价=成本×(1+期望利润的百分数).
定价高了,商品可能卖不掉,只能降低利润(甚至亏本),减价出售.减价有时也按定价的百分数来算,这就是打折扣.减价 25%,就是按定价的(1-25%)= 75%出售,通常就称为75折.因此
卖价=定价×折扣的百分数.
(1+期望利润的百分数)×折扣=(1+利润的百分数)
【例1】某商品按定价的 80%(八折或 80折)出售,仍能获得20%的利润,定价时期望的利润百分数是( )
A:40% B:60% C:72% D:50%
解析:设定价是“1”,卖价是定价的 80%,就是0.8.因为获得20%的利润,则成本为2/3。
定价的期望利润的百分数是 1/3÷2/3=50%
答:期望利润的百分数是50%.
【例2】 某商店进了一批笔记本,按 30%的利润定价.当售出这批笔记本的 80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是( )
A:12% B:18% C:20% D:17%
解:设这批笔记本的成本是“1”.因此定价是1×(1+ 30%)=1.3.其中
80%的卖价是 1.3×80%,
20%的卖价是 1.3÷2×20%.
因此全部卖价是
1.3×80% +1.3 ÷ 2×20%= 1.17.
实际获得利润的百分数是
1.17-1= 0.17=17%.
答:这批笔记本商店实际获得利润是 17%.
【例3 】有一种商品,甲店进货价(成本)比乙店进货价便宜 10%.甲店按 20%的利润来定价,乙店按 15%的利润来定价,甲店的定价比乙店的定价便宜 11.2元.问甲店的进货价是( )元?
A:110 B:200 C:144 D:160
解:设乙店的进货价是“1”,甲店的进货价就是0.9.
乙店的定价是 1×(1+ 15%),甲店的定价就是 0.9×(1+20%).
因此乙店的进货价是
11.2÷(1.15- 0.9×1.2)=160(元).
甲店的进货价是
160× 0.9= 144(元).
答:甲店的进货价是144元.
设乙店进货价是1,比设甲店进货价是1,计算要方便些。
【例4 】开明出版社出版的某种书,今年每册书的成本比去年增加 10%,但是仍保持原售价,因此每本利润下降了40%,那么今年这种书的成本在售价中所占的百分数是多少?
A:89% B:88% C:72% D:87.5%
解:设去年的利润是“1”.
利润下降了40%,转变成去年成本的 10%,因此去年成本是 40%÷10%= 4.
在售价中,去年成本占
因此今年占 80%×(1+10%)= 88%.
答:今年书的成本在售价中占88%.
因为是利润的变化,所以设去年利润是1,便于衡量,使计算较简捷.
【例5】 一批商品,按期望获得 50%的利润来定价.结果只销掉 70%的商品.为尽早销掉剩下的商品,商店决定按定价打折扣销售.这样所获得的全部利润,是原来的期望利润的82%,问:打了( )折扣?
A:6 B:7 C:8 D:9
解:设商品的成本是“1”.原来希望获得利润0.5.
现在出售 70%商品已获得利润
0.5×70%= 0.35.
剩下的 30%商品将要获得利润
0.5×82%-0.35=0.06.
因此这剩下30%商品的售价是
1×30%+ 0.06= 0.36.
原来定价是 1×30%×(1+50%)=0.45.
因此所打的折扣百分数是
0.36÷0.45=80%.
答:剩下商品打8折出售.
从例1至例5,解题开始都设“1”,这是基本技巧.设什么是“1”,很有讲究.希望读者从中能有所体会.
【例6】 某商品按定价出售,每个可以获得45元钱的利润.现在按定价打85折出售8个,所能获得的利润,与按定价每个减价35元出售12个所能获得的利润一样.问这一商品每个定价是( )元?
A:100 B:200 C:300 D:220
解:按定价每个可以获得利润45元,现每个减价35元出售12个,共可获得利润
(45-35)×12=120(元).
出售8个也能获得同样利润,每个要获得利润
120÷8=15(元).
不打折扣每个可以获得利润45元,打85折每个可以获得利润15元,因此每个商品的定价是
(45-15)÷(1-85%)=200(元).
答:每个商品的定价是200元.
【例7】 张先生向商店订购某一商品,共订购60件,每件定价100元.
张先生对商店经理说:“如果你肯减价,每件商品每减价1元,我就多订购3件.”商店经理算了一下,如果差价 4%,由于张先生多订购,仍可获得原来一样多的总利润.问这种商品的成本是( )
A:66 B:72 C:76 D:82
解:减价4%,按照定价来说,每件商品售价下降了100×4%=4(元).因此张先生要多订购 4×3=12(件).
由于60件每件减价 4元,就少获得利润
4×60= 240(元).
这要由多订购的12件所获得的利润来弥补,因此多订购的12件,每件要获得利润
240÷12=20(元).
这种商品每件成本是
100-4-20=76 (元).
答:这种商品每件成本76元.
行测数学运算16种题型之因式分解
要点提示:提取公因式进行简化计算是一个最基本的四则运算方法,但一定要注意提取公因式时的公因式选择的问题。
【例1】计算999999×777778+333333×666666
方法一:原式=333333×3×777778+333333×666666
=333333×(3×777778+666666)
=333333×(2333334+666666)
=333333×3000000
=999999000000
方法二:原式=999999×777778+333333×3×222222
=999999×777778+999999×222222
=999999×(777778+222222)
=999999×1000000
=999999000000
评:方法一和方法二在公因式的选择上有所不同,导致计算的简便程度不相同。
【例2】1235×6788与1234×6789的差值是:
A.5444 B.5454 C.5544 D.5554 (2001年中央真题)
解析:原式=1235×6788-1234×6788-1234
=6788×(1235-1234)-1234
=6788-1234
=5554
【例3】2745×1962-2746×1961的值是:
A.674 B.694 C.754 D.784 (2004年浙江真题)
解析:原式=2745-1761
=784
所以,答案为D。
重复数字的因式分解
核心提示:重复数字的因式分解在公考中是一个重要考点,这个考点是建立在数字构造具有一定规律和特点的基础上的。
例如:2424=24×101,101101=101×1001,2230223=22302230/10=2230×10001/10=223×10001。这些在数字构造上具有一定特点的数字都可以变换成因式相乘的形式。
【经典例题】
1.2002×20032003-2003×20022002=?
原式=2002×2003×10001-2003×2002×10001=0
2.9039030÷43043=?
原式=903×1001×10÷(43×1001)=210
3.37373737÷81818181=?
原式=(37×1010101)÷(81×1010101)=37/81
因篇幅问题不能全部显示,请点此查看更多更全内容