您好,欢迎来到乌哈旅游。
搜索
您的当前位置:首页机械类英文参考文献

机械类英文参考文献

来源:乌哈旅游
IntJInteractDesManuf(2011)5:103–117DOI10.1007/s12008-011-0119-7

ORIGINALPAPER

Benchmarkingofvirtualrealityperformanceinmechanicseducation

MauraMengoni·MicheleGermani·MargheritaPeruzzini

Received:27April2011/Accepted:29April2011/Publishedonline:27May2011©Springer-Verlag2011

AbstractThepaperexploresthepotentialitiesofvirtualreality(VR)toimprovethelearningprocessofmechanicalproductdesign.ItisfocusedonthedefinitionofaproperexperimentalVR-basedset-upwhoseperformancematchesmechanicaldesignlearningpurposes,suchasassemblabilityandtolerancesprescription.Themethodconsistsoftwomainactivities:VRtechnologiesbenchmarkingbasedonsensoryfeedbackandevaluationofhowVRtoolsimpactonlearningcurves.Inordertoquantifytheperformanceofthetechnol-ogy,anexperimentalprotocolisdefinedandantestingplanisset.Evaluationparametersaredividedintoperformanceandusabilitymetricstodistinguishbetweenthecognitiveandtechnicalaspectsofthelearningprocess.Theexperi-mentalVR-basedsetupistestedonstudentsinmechanicalengineeringthroughtheapplicationoftheprotocol.KeywordsMechanicalproductdesign·Virtualreality·Experimentalprotocol·Learningcurve·Mechanicseducation

1Introduction

Modernsocietyisdominatedbycontinuousscientificandtechnicaldevelopments.Specializationhasbecomeoneofthemostimportantenablersforindustrialimprovement.Asaresult,nowadayseducationismoreandmorejob-orientedandtechnicaleducationisassuminggreaterimportance.Inthiscontextbothuniversityandindustryarecollaboratingtocreatehighprofessionalcompetencies.Thefirstdisseminates

M.Mengoni(B)·M.Germani·M.PeruzziniDepartmentofMechanicalEngineering,PolytechnicUniversityofMarche,

ViaBrecceBianche,60131Ancona,Italye-mail:m.mengoni@univpm.it

knowledgeandinnovativemethodswhilethesecondpro-videsapracticalbackgroundforgeneralprinciplestraining.Themainproblemdealswiththeeffortandtimerequiredtoimprovetechnicallearning,whilemarketcompetitivenessforcescompaniestodemandyoungandhigh-qualifiedengi-neersinshorttime.Therefore,theentireeducationalprocessneedstobefastandefficient.Novelinformationtechnolo-gies(IT)andemergingvirtualreality(VR)systemsprovideapossibleanswertotheabove-mentionedquestions.Someofthemostimportantissues,inmechanicaldesignfield,aretheinvestigationofsuchtechnologiespotentialitiesandtheevaluationofachievablebenefitsintermsofproductdesignlearningeffectivenessandquality.WhileIThasbeendeeplyexploredindistanceeducation,i.e.e-learning,VRstillrep-resentsanovelty.

VRreferstoanimmersiveenvironmentthatallowspow-erfulvisualizationanddirectmanipulationofvirtualobjects.Itiswidelyusedforseveralengineeringapplicationsasitprovidesnovelhumancomputerinterfacestointeractwithdigitalmock-ups.Thecloseconnectionbetweenindustryandeducationrepresentsthestartingpointofthisresearch.Insteadoftraditionalteachingmethods,virtualtechnolo-giescansimultaneouslystimulatethesensesofvisionbyprovidingstereoscopicimagingviewsandcomplexspatialeffects,oftouch,hearingandmotionbyrespectivelyadopt-inghaptic,soundandmotiondevices.Thesecanimprovethelearningprocessinrespectwithtraditionalteachingmeth-odsandtools.Theobservationofstudentsinterpretingtwo-dimensionaldrawingshighlightedseveraldifficulties:theimpactevaluationofgeometricanddimensionaltoleranceschains,thedetectionoffunctionalandassemblyerrors,therecognitionofrightdesignsolutionsandthechoiceofthepropermanufacturingoperations.Theselimitationsforcetutorstoseekforinnovativetechnologiesabletoimprovestudents’perception.

123

104InvestigationsintotheuseofVRhaveindicatedthatitmayimprovethelearningprocessofferingamoreusefulproduct’srepresentationandcreatinganaugmentedenvironmentforthemodelsinvestigationanddescription.ThemainproblemdealswiththeeffectiveapplicationofaVRsystemintoedu-cationalsituationsandtheappraisalofitsimpactonlearning.ThesearecrucialpointsifweconsiderthatthedefinitionofaproperVRarrangementforspecificlessonpurposeshastobecorrelatedtothelearningprocessastheresultofindi-vidualskills(proceduralaspects)andinstrumentalpractice(declarativeaspects).

ThescopeofthisresearchistheexperimentationofVRinmechanicalproductdesignteaching,theassessmentofthelimitsandadvantagesofavailabletechnologiesand,finally,theevaluationoftheachievedlearningprocessperformance.Inthiscontext,thepaperaimsatdefiningbothaproperVRset-upformechanicalproductdesignteachingandanexper-imentalprotocolforvalidationtests.AmethodisproposedtobenchmarkcurrentVRtechnologies.Itisbasedonthestudyofproductdesignlessonsbytraditionalmeansofrep-resentation,ontheidentificationofthemaincriticalactivitieswherepaper-basedtoolsandCADsystemsusuallyfailandonthecorrelationbetweentheidentifiedactivitiesandtoolsusability,achievedpresenceanddepthofsensationsthatareperceivedintotheexperienced-basedlearningenvironment.Thenanexperimentalprotocolbasedonspecificcontextmet-ricsisdefined.ItaimsatevaluatingboththelearningprocessperformanceforthespecificpurposeandtheusabilityoftheadoptedVR-basedset-up.

2Background:VRtechnologiesforlearningpurposes2.1LearningenvironmentsformechanicalproductdesignAlearningenvironmentischaracterizedbyactiveinterac-tionsamongallinvolvedindividuals.Kaye[13]inparticularstatesthatlearningisanindividualprocessbutitisalwaysinfluencedandstimulatedbytheexternalcontext.Onlybyconversationandcomparisonwithpeersandexperts,stu-dentsreachasolidknowledgeofthespecifictopics.Mul-tidisciplinaryenvironmentsareparticularlyappropriateforeducationalpurposes:scientificstudiesshowedthathumanlearningusuallyhappensfor83%bysight,only10%byhearingandtherestbyothersenses[17].Ontheotherhand,collaborativeenvironmentsprovidelearnerswithseveraladvantagessuchastheopportunitytoexperiencethemulti-plestandpointsofotherlearnerswithdifferentbackgroundsandtheabilitytodevelopcriticalthinkingskillsthroughtheprocessofjudgingandvaluing.Inordertoimprovecol-laboration,advanceddigitaltechnologiesmayhelpstudentsforincrementinglearningbysimulatingrealdesignprocessoperationsandbysharingthedesignoutcomes[10].

123

IntJInteractDesManuf(2011)5:103–117

Arecentstudyshowsthatdesigneducationcanbeimplementedbytwomaindifferentapproaches[22]:•face-to-faceeducation,thatimprovesthelearners-learnersandlearners-instructorsinteraction.Themainproblemsinexperience-basedlearningapplicationarerelatedtoretrievinginformation,developingcollaborativeworkandexperiencingdesignsolutionsinrealtime;

•distanceeducation,thatimplieslearnersandinstruc-torsingeographicallyseparatedsites.Threedifferentapproachesandrelatedcommunicationmediaarepro-posed:(a)one-wayinstructionbymail,radioandtelevi-sion,(b)singletechnologyinstructionbycomputer-basedorweb-basedlearning,and(c)blendedlearningthatcom-binesface-to-facewithasynchronousand/orsynchronouscomputertechnology.Thesamestudydemonstratesthatface-to-faceismoresuc-cessfulthandistancelearninginmechanicalproductdesignwheretheunderstandingofdesigntopicsrequiresaconcreteexperimentationofgeneralprinciples.Theconceptofexpe-rienced-basedlearninghasbeenwidelyexploredindesignteaching.Itbasicallyconsistsofthefollowingsteps:con-creteexperienceoftechnicalproblemsandsolutions,obser-vationoftheachievedresultsandformulationofabstractconceptsandgeneralizations[14].Otherresearchesclaimedthatlearningwithoutexecutionofactionremainsatthestateofmentalactionandthereforedistantfromrealaction[21].Thesepreliminaryconsiderationspointouttheimportanceofadoptingeducationalmethodsandtoolsthatmakestudentsexperiencedesigntopicsinaneffectiveway.Asuitablelearn-ingset-upoughttoanswerstudents’needsandtoenablethemtoreacheducationalgoals.

2.2PotentialitiesofVRinmechanicalproductdesign

teachingTraditionalteachingisalmostentirelycentredon2Drep-resentationsthatmakedifficulttheinterpretationofdiffer-entdesignsolutionsanderrorsdetection.NowadaysCADsystemsoffer3Dmodelsvisualizationandanimationthatsupportassemblycomprehensionbyabettervisualcharac-terization.Otherwiseperceptionisstilllimitedonlytosightanditdoesnotsignificantlyincrementthelearningprocess.ItisworthtonoticethatCADsystemsfunctionalitiesarenotabletosupporttheidentificationofawkwardreachanglesorrelevantassembly/disassemblyissues.

Theuseofexperimentallaboratoriesmayovercometheabove-mentionedproblems.Theyallowstudentstoexperi-encemechanicalequipmentsandmanufacturingoperations.Highcostsofmaintenance,greatinitialinvestmentsandtheincreasingnumberofclassroomstudentsmakelaboratoriesnoteasytobekeptup.

IntJInteractDesManuf(2011)5:103–117VR-basedenvironmentsseemtobeavalidsolutiontoimprovemechanicaldesigntopicslearning.Howeverthisintuitiveassumptionneedstobeobjectivelydemonstrated.ResearchesintotheuseofVRhaveindicatedthatitmayoffermoreusefulartefactsrepresentationsandsimulatetherelevantcharacteristicsofaproductsuchasengineering,manufacturingandmaintenanceaspects[6].Inparticular,inassemblyandtolerancesanalysisVRenvironmentscansup-portrealisticinteractionbetweenpartsbyreal-timesimula-tionofphysicalconstraintsandanintuitiveinterface,whichallowsnaturalmanipulation.Somestudieshavesuggestedalsothataddingforcefeedbacktoassembly,virtualanal-ysisincreasestaskefficiencyandperformance[1,25]whileeliminatingphysicalprototypesgivessubstantialcostsavings[23].Finally,virtualenvironmentsmayeasilycreatecollabo-rativespaceswherestudentslearnmultiple-levelinformationabouttheproduct,listentodifferentinterpretationsandsharetheirlearningexperiencetodeveloptheirownpracticalandcognitiveskills.

Mostoftherecentstudiesonface-to-facedesigneducationhighlightthepotentialitiesofVRtechnologiestoimproveperceptionineducationandtrainingapplications[4,20,24].ThemainadvantagesrecognizedtoVRapplicationsare:•theimprovementofthespatialabilityoflearnersastheyallownotonlythevisualizationof3Dmodelsbutalsotheirexperimentation.Furthermorestudentsfindthemmucheasiertounderstandthingsfromdiagramsormod-elssimplylookingatgraphsormathematicalalgorithms;•theknowledgesharingfacilitationandthecollaborationinmultidisciplinaryteamwork;

•theachievementofsenseofpresenceinsteadoftraditionalvisualizationtechnologies;

•theinteractionwithvirtualmodelsinaveryintuitiveandnaturalmanner.Althoughtheabove-mentionedadvantages,noexperimen-talresultshavebeenachievedinselectingthemostsuitabletechnologiesformechanicseducationtasks.ThisismainlyduetothehighcostsofVRtechnologyimplementation,thedifficultytoidentifytheproperVRtechnologiescombina-tionforthespecificlearningpurposesandthecomplexitytounderstandhowitimpactsonthelearningcurve.2.3EvaluationofVRtechnologiesinthelearningprocessTheabilityofamechanicaldesignerisearnedbyexperienceandpracticeandcouldbeconsideredtheoutcomeofhis/herlearningprocess.Overtheyears,severalmodelsweredevel-opedtocapturethehumanperformanceincarryingoutatask.Theyareusuallybasedontwomainlearningcurvesforms:time-basedorperformance-basedrepresentations.Outlininglearningcurvehasbecomeaverypopularmethodthanksto

105

itssimplicityofuseanditsabilitytofitempiricaldatawell[15].

Fromthelearningpointofview,mechanicalproductdesignimpliesasequenceofmentalandpracticalactivi-ties,suchasthecreationofsolidmodels,theirassembly,thecomprehensionoftheirinterrelationsandtheirparticularfunctions.Thetransferofacquiredexpertisedependsonboththeindividualaptitudeforlearningandtraducingactionintoexperience(cognitivelevel)andthesupportandeasetouseoftools(technicallevel).Consideringthecaseunderinves-tigation,thethinkingprocessesallowstudentstoelaboratetherightprocedureforproductdesign,butthemerecourseofactionsdoesnotleadtoasuccessfulresult.Furthermore,tools’usabilityandlearnabilityinfluencethelearningpro-cess.Severalstudiesstressedtheneedtounderstandhownewtechnologiesaffectlearningcurvesinordertoestablishtheappropriatetrainingandassessment[8].Recentworksarenotablyorientedtoconsiderfinallearningasthesumofcog-nitiveandtechnicalcomponents.Hamadeetal.[7]developamethodtoassessthespeedandproficiencyofCADsys-temslearning,basedontestexercisesandonthemeasureoftwoobjectivefactors,performancetimeandfeaturecount.Thestudyinterestliesnotonlyintheobjectivityandporta-bilitytoothercontexts,butalsointhedistinctionbetweenproceduralanddeclarativeknowledge.Totallearningcurveissetupanddecomposedintoitscognitiveandbehaviouralcomponentsthroughadual-phaselearningmodelapproach.Howeverthemethodleavesouttheusabilityofequipmentanditusesonlyobjectivemetricsunderestimatingthesub-jectivecomponents.

DistinctionofcognitiveandtechnicalaspectsiscitedalsobyBlavieretal.[3].Theyachieveamorecompleteevalu-ationandincludetheperceptualandthetechnologyimpactonthelearningperformance.Theresearchestimateslearningcurvesinacomparativestudybetweenclassicalandroboticlaparoscopyandappealsbothtoobjectivedatacollecteddur-ingexperimentaltestsandsubjectivedatacollectedbyques-tionnaires.

BothobjectiveandsubjectivedataarerequiredforanaccurateevaluationofaVR-basedset-upformechanicallearningpurpose.Thisisthefocusofthepresentresearch.ThiswayallowsmeasuringperformanceadvantagesandestablishinghowmuchtheVRsystemcontributestostu-dents’learningexperience.

3TheVR-basedset-upformechanicalproductdesignlearning

3.1VRtechnologiesclassificationbasedonperceptionPerceptionindesigneducationplaysacrucialroleinincrementingknowledge.Althoughseveralresearchersare

123

106IntJInteractDesManuf(2011)5:103–117

concentratedonvisualperception[18],itisworthtonoticethatindividualsperceiveobjectsandthespacesurroundingthemalsobyallothersensorialmodalities.

Humanbeingsdependonfivesensestoexperiencetheirsurroundingsandinferfromthephysicalobjectsandenvi-ronmentaroundthem.Usersinteractwithobjectsandtheirinterfacebyexperiencingthemwiththeirsensorialmodali-tiesthatgenerateasetofstimuli.Theyarefirstelaboratedatacognitivelevelandthentransformedintoactions.InordertoobtainsimilarconditionsbyVR,itisnecessarytoidentifywhichtechnologybetterstimulateseachsenseandprovidesdeepsensationsintheusers.

TheproposedclassificationstartsfromtheBurdea’sdef-initionofVRas“ahigh-enduser-computerinterfacethatinvolvesrealtimesimulationandinteractionsthroughmul-tiplesensorialchannels”[2].AvailableVRtechnologiesaredividedintofourclasses(visual,sound,hapticandmotion)thatcorrespondtothefoursensorialchannelsinvolvedinthevirtualexperience(vision,hear,touchandmotion).Eachofthemprovidesthecorrespondingsensorialfeedbacktotheusers(Fig.1).

Thesenseofmotion,sometimescalledthesixthhumansense,isusuallyachievedviasomemeansofpositionandorientationtrackingthatmediatetheuser’sinputintotheVRsimulation.Theyincludeallnavigationandmanipulationtechnologies.Thesenseoftouchisperformedbywhatarecalledhaptictechnologies.Tactileandforcefeedbackdevicesseektosimulatetactilecues.Thesenseofvisionisprovidedbyvisualizationtechnologies.Theycanbedividedintosin-gle-userdisplaysandmulti-usersdisplays.Thefirstsaregen-erallydesk-supportedwhilethesecondsarelargevolumedisplaysthatallowthesimultaneouscollaborationofseveralindividuals.Theycanbeflatorcurved,frontofrearprojec-tion-based;theymayprovidepassiveoractivestereoscopicexperience.Thesenseofhearingisprovidedbysoundtech-nologies:stereosound,specializingmultiplesoundsourcesand3Dsound.Theydifferfromeachotherinthelevelofrealisticfeedbacktheysupplytotheuser.

Inordertoachieveafullyimmersiveenvironmentthatimprovesstudents’perceptionofthevirtualscene,alsosmellandtastefeedbackmustbesimulatedbutthecomplexityofthesesenseshasmadethemdifficultforavailableVRtech-nologytoconquer.

Allthesetechnologiesarealsocombinedwiththecom-putinghardwareforVRreal-timesimulationandinteractionsupportandwiththesoftwaretoolkitstomaptheinput/outputdeviceswiththedigitalscene,model3DobjectsandcreatelibrariesforoptimisingVRsimulations.

Fig.1TheproposedclassificationofVR

technologiesandthecorrelationwiththehumansenses

123

IntJInteractDesManuf(2011)5:103–117107

3.2AmethodforVRbenchmarkingtoachievethelearning

goalsInordertoimproveexperimental-basedlearningbyVRtech-nologies,studentsshouldfeelbeinginvolvedinthevirtualenvironmentandbeallowedtotestprinciplesbytouching,hearingandmovingtheobjectstheyareworkingwith.Ithasbeendemonstratedthatthecommunicationmediuminflu-encestheformofinteractionandknowledgeperceptionandcognition,particularlywhenlearnersareunfamiliarwiththecommunicationtechnologiesusedtodeliverinstructionandperformdesigntasks[19].ThereforewestatethatinVRapplicationsforeducation,itisimportanttoevaluatenotonlythelevelofinvolvementperceivedbytheuserbutalsothesystem’susability.

Basedontheseconsiderations,thebenchmarkingofVRtechnologiescombinationisbasedonthreedifferentclas-sesofheuristics:usability,presenceanddepthofsensations.UsabilityconcernsthecapacityoftheVRinterfacestomeettheusers’needs.Thedegreeofthesystemusabilitydependsondifferentcharacteristicssuchastheadoptedtoolsbar-rierfree,ease-to-use,intuitiveness.Presencemeans“beingimmersed”andreferstoanemotionalandmentalstateofbeinginvolvedinthevirtualscene;itdenotesthelevelofengagement.Thesenseofpresenceisdeterminedbysomecharacteristicsofthesystemsuchasinteractivity,collabo-ration,nonconstrainingornavigationsupport.Finally,thedepthofsensationreferstothedegreeofthesensoryfeed-back(visual,tactile,auditory)thatusersfeelwhileexploringthevirtualspace.

Inordertomanagethecomplexityofallpossiblecombi-nationsofVRtechnologies,amatrix-basedmethodisintro-duced.Two3Dmatricesareusedtoconnecttechnologiesandhumansenses:thefirstallowsthemanagementofthecombinationbetweenhaptic,visualandnavigationtechnol-

ogies,whilethelattermatchesthefirstachievedarrange-mentwithsoundtechnologiesandassignsavalueforeachfinalcombinationtoeachheuristicsforassessingthesystem’sperformance(Fig.2).InordertoidentifywhichVRcombina-tionissuitedtoteachspecificmechanicaldesignsubjectsweintroduceanadditionalmatrix,whichcorrelatestheactiv-itiesnecessarytoperformexperienced-basedlearningandthelevelsofsensoryfeedbacknecessaryforperceptionandcognition.Onthecontraryofpreviousmatrices,thatareful-filledbyVRexpertsastheyrelatetotechnicalandfunctionalperformancesandarenotdesignlearning-oriented,thisaddi-tionalmatrixneedstobefulfilledbyprofessorsofmechanicalproductdesignfortheirdeepexperienceoflearningenviron-ments.

Themethodapplicationpreliminarilyrequirestheanaly-sisofwhichactivitiesshouldbeperformedtogainagoodunderstandingofthelessonsubjects.Inthestudycontext,twodifferentmechanicalproductdesigntopicshavebeenexploredandforeachofthemthenecessaryteachingactivi-tieshavebeentraced.

•Productfunctionaldesignandassemblyprinciples.Thetopicaimstodevelopacriticalattitudeintheinterpretationofmechanicalcomponentsandassemblies,infunctionalerrorsdetectionandintheidentificationofassemblyproblems.Infunctionaldesignthetutorgenerallyshowsdifferentfunctionalalternativesinordertoclarifytheseconcepts.Theuseofexamplesisconsideredfundamentaltoimprovegeneralprinciplesunderstanding.

•Dimensionalandgeometrictolerances.Thetopicaimstodeveloptheabilityofidentifyingassemblyandmanufacturingproblemsindifferentdesignsolutionsandtherelationbetweentolerancesandfinalproductquality.Inparticularstudentsshouldbeabletover-ifytheconsequencesoftolerancesprescriptiononthe

Fig.2Synthesisoftheproposedmethod

123

108IntJInteractDesManuf(2011)5:103–117

Table1Assessmentofthesensoryfeedbacknecessarytoundertakethenecessaryactivitiesforlearningproductfunctionalandassemblyprinciplesandgeometricanddimensionaltolerancesprescription

Valuation

DefinitionofthelevelsofsensoryfeedbackforteachingpurposesAssessmentofdesignsolutionalternativescombiningdifferentstandardcomponentswithsimilarfunctions

Assessmentoftheimpactofdesigndecisionsonmanufacturingandassemblyoperations

IdentificationofmanufacturingandassemblyproblemsbyanalyzingmanufacturingoperationsandequipmentsIdentificationoftheright

functionaldesignsolutionbyanalyzingthemanufacturingandassemblycyclecostsofdifferentalternatives

Detectionoffunctionalandassemblyerrorsindifferentdesignsolutions

Understandingcomponentsinteractioninassembliesandidentificationofthepropersequenceofassemblyoperations󰀁AbsoluteImportance(bij)

󰀁

RelativeImportance(ai*bij)Requestedvalue󰀁󰀁ofsensoryfeedback(ai*bij/5*bij)

Interpretationofadesignsolutionandidentificationofthetolerances

Identificationofthedimensionalandgeometrictolerances

referencesandofthedifferencebetweenthem

Understandingofthedifferencesbetweentolerancesaccordingtothecontroltechniques

IdentificationofthemanufacturingandassemblyproblemsderivingfromwrongtoleranceschainAssessmentoftheimpactof

toleranceschainontheassemblyoperations󰀁AbsoluteImportance(bij)

󰀁

RelativeImportance(ai*bij)Requestedvalue󰀁ofsensory󰀁

feedback(ai*bij/5*bij)

Senseofsight5

LevelsofsensoryfeedbackSenseoftouch5

Senseofhearing1

Senseofmotion

3

52

35

5

1

3

3411

53

55

55

55

612530.8733

55

2

24

455441880.7

355

11

335

manufacturingandqualitycontrolprocessesandoftol-erancesvariationonproductfunctionalities.Studentsshouldalsobeabletorecognizetolerancechainsandidentifytheproperreferences.Professorsinmechanicalproductdesignhavebeeninvolvedinthedefinitionofthemostsignificantactivitiesandthelev-elsofsensoryfeedbacknecessarytoperformthem.Table1showsthenecessarylearninglevelofproductfunctional

123

IntJInteractDesManuf(2011)5:103–117designandassemblyprinciplesanddimensionalandgeo-metrictolerancesprescription.Theevaluationvaluesinthegreycolumnarerelatedtotheimportancethateachactivityrepresentsforthelearningprocess.Thevaluesinthesidecolumnsrepresentthesensoryfeedbackrequiredforperformingeveryactivitysuccessfully,accordingto1–5scale.Forexample,itcanbestatedthatthesenseofsightisveryimportant(thelevelis5)inassessingdesignsolutionalternativeswhilethesenseofmotion(3)andthesenseoftouch(1)aresecondary.Hearingisusefulinnoway.Onthecontrarythefunctionalandassemblyerrorsdetectioninvolvesthesamethreesensorialchan-nelsbuttheyallarekeyfactorsandgainanequalfeed-backlevel(5).Absoluteandrelativeimportancevaluesarecalculatedapplyingmathematicalfunctionsshowedintable.FinalvaluesassessthelevelofsensoryfeedbackrequestedtotheproperVRset-uptechnologyinordertosupporttheconcerningtopic.Incasestudyobtainedfeed-backvaluesareequalrespectivelyto0.87forfunctionalandassemblyprincipleslearningand0.7fortoleranceslearning.

AnexhaustivedescriptionofthebenchmarkingmethodcanbefoundinapreviousresearchworkwhereitwasappliedforidentifyingtheVRsystemthatbetteranswerstodesignreviewsactivitiesrequirements.ExperimentalresultspointedoutthatmostadvantagesintheuseofVRareachievedwhenthetechnologyisselectedaccordingtospecificprocesschar-acteristicsandneeds[19].

AtthispointthreedifferentVRtechnologiescombinations(C1,C2andC3)havebeenchosenfortheassessment.C1isasingle-userlearningenvironmentthatconsistsofahead-mounteddisplay(HMD)coupledwithacommonmouse.C2consistsofalargevolumedisplayprovidedwithste-reoimagingandanoptictrackingsystemthatbothimprovevisualperceptionofdesignsolutionsandcreateacollab-orativeenvironment.C3associatesasimilarlargevolumedisplaywithafinger-basedhapticdevicethatgivesforcefeedbackandtactileperceptionofmaterialsandcompo-nentsinteraction.Theevaluationmethodisbasedonasetofheuristicsthatareconvenientlydefinedforvirtualrealitysystemcontext.Heuristicsaregroupedintothreedifferentdimensions(usability,presenceanddepthofsensation)aspreviouslydescribed.EachVRcombinationisevaluatedbyafive-pointLikertscale[16].

Themethodapplicationallowsthedefinitionofarelativetotalvalueforeverytechnologicalset-up(Fig.3).Comparingtheobtainedtotalvalueswiththesensoryfeedbackrequiredbymechanicaldesignlearningtopicsitispossibletorec-ognizewhichtechnologicalcombinationfitsbetterforthespecificpurpose.

ThecasestudyresultshighlightthatC3combinationisthebestsuitedinsupportingproductfunctionaldesignandassemblyprinciplesteachingwhileC2combinationisthe

109

bestsuitedintoleranceslearning.Ifwewouldidentifythecombinationthatbetteranswerstobothtopics,C3shouldbeselected.Itsfinalvalueisthenearesttobothrequestedfeedbacklevels.

4AstructuredexperimentalprotocoltoassessthelearningprocessinmechanicalproductdesignInordertoverifytheapplicabilityoftheproposedmethodandtotestthemainadvantagesconnectedwiththeuseoftheachievedVRtechnologiescombinations,astructuredexperimentalprotocolisset.Accordingtotheeducationalstandpointitisworthtonoticethatlearners’performancesalwaysdependontwomainfactors:thepersonalaptitudeforspecificsubjectsandtheinfluenceoftheadoptedhard-wareandsoftwaretechnologies.Thesetwodimensionsinmechanicseducationarestrictlyinterconnected:itisdifficulttodistinguishtheirspecificimpactonthelearningprocess.Thereforeunderstandinghowtechnologyaffectslearningisanotatrivialtask.

Inordertofacethisissuetwoevaluationlevelsarecon-sideredinsidetheprotocol:performanceandusability.Thefirstanalysisaimsatmeasuringtheperformancesachievedbystudentsduringlessonsandtoquantifytheminanobjec-tiveway.Inthiscontexttimemonitoring,errordetectionandlearningcurvescouldbeusefulindicators.Thesecondanal-ysisaimsatassessingtheusabilityoftheexploitedsupportsystem.ItcanbestatedthatforlearningscopeahighlyusableVRset-upisneeded.4.1Performanceanalysis

Theperformanceanalysisisbasedonasetofobjectivemet-ricsanddirectevaluationmethods,suchasusertaskanalysis.Performancemetricsaredefinedconsideringthemaindiffi-cultiesofstudentsinmechanicalproductdesignlearning.Theyareexpressedbytangibleentities,suchastimeandpercentagemistakes,relatedtothefollowingaspects:••assembly•assemblyrecognitioncapability,•assemblabilitysequence•surfaceerroridentification,detection,•design•dimensionalalternativesfinishingcomprehension,evaluation,•geometric•matingtolerancestolerancesdetection,•

tolerancestypedetection,geometricalchainrecognition,

tolerancescomprehension,impact.

Eachaspectrepresentsapossibletaskforeachmechanicseducationtopicthatisidentifiedduringthebenchmarking

123

110IntJInteractDesManuf(2011)5:103–117

Fig.3ThestudiedVRcombinationsforsimulatingassemblyoperations.TheyconsistrespectivelyofHMDcoupledwithacommonmouse(C1),alargevolumedisplayprovidedwithstereoimagingandoptictrackingsystem(C2)andasimilardisplaywithafinger-basedhapticdevice(C3)

activity.Metricsareusedtoassessthestudents’performancewhileexecutingthespecifictasks(Table2).

Performanceanalysiscanbeachievedbytheso-called“formativeevaluation”,thatiscommonlyusedinassess-ingtaskperformance.Invirtualenvironmentstheformativemethodissuccessfullyappliedinapplication-specificevalua-tion[9].Itisauser-centredtechniquethatusesaspecifictask-basedscenarioanddefinesactivitiesandtasksflow.Usersworkthroughtheproposedscenarioandevaluatorsobservethemandcollectdata.Notonlyquantitativedatacouldberecordedbutalsoqualitativeones,suchasuser’scommentsandreactions.Inordertovaluateperformancejustquantita-tivedataneeded.Howeverusersmonitoringisusefulforthefollowingusabilityanalysis.

Repeatingmulti-userandtime-spacetestsitispossibletodrawnthetotallearningcurve.Itsslopesuggeststhequal-ityofthelearningprocess[15].Suchperformanceanalysiscanbesuccessfullyappliedinordertoevaluatemechanicaldesignlearningprocessingeneral,withtraditionalmediaorVR-basedmedia.4.2Usabilityanalysis

Performanceisnottheonlyworthwhileaspectinlearningevaluationbutalsotheinvolvementandthetoolsmasteryperceivedbystudentsareimportantfactors.TheusabilityanalysisaimsatinvestigatingtheimpactoftheadoptedmeansofrepresentationonlearningandatassessingthequalityoftheinteractionbetweenstudentsandtheVRsys-temintermsofefficiency,effectivenessandsatisfaction[12].

Itisbasedonusabilitymetricsasquantitativeandqualita-tiveestimatesofstudents’responseandindirectevaluationmethods,suchaspost-hocquestionnaireandobservationsbyexperts.MetricsaredefinedforeachusabilitydimensionconsideringaVRtechnologycontextandthespecificeduca-tionalpurpose.Thereforeincanbestatedthateffectivenessisrelatedtovisibility,interactionsupportandsensoryfeed-backprovidedbythesystem.Efficiencydependsoninfor-mationavailability,easeofuse,mentalworkloadandsystemreactivity.Satisfactionisconnectedwithperceivedcomfortandreliability,simplicityofactionsandinformationquality(Table3).

Tomeasureusabilitymetricsweadoptedtwodifferentinvestigationtechniques[9],inordertocollectqualitativeandquantitativedata:users’observationandpost-hocques-tionnaires.Subjectiveimpressionsarecollectedbyquestion-nairesandstudentsconsidertheirownlearningexperienceandscoreeachmetricafterperformingthetaskscenario.Afive-pointLikertscale[16]ischosentoassignavaluetomet-ricsindicatorsandeachscoreisweightedaccordingasstu-dentsgetusedtovirtualmodellingtools,i.e.traditionalCADsystems,ornot.Westatethatthemultipliercorrespondsto0.5ifthestudentisconfidentwithvirtualmodellingandto1ifhe/sheisnot.Quantitativedataarecollectedbyusersdirectmonitoringorbyvideorecording.Theobserverjudgesuser’sbehaviourandexpressesavalueforeachusabilitymetricbyfollowingthesameLikertscale.

Usabilityanalysisbecomesfundamentalincomparingdif-ferentVRset-upandestablishingwhichisthebestforthespecificpurpose.

123

IntJInteractDesManuf(2011)5:103–117Table2Proposedperformancemetricsformechanicaldesignlearning

111

TopicTaskDescription

Itisaskedtorecognizetheform,thetotalvolumeandthemainfunctionoftheproduct

MetricsTime(min)Mistakes(%)

ProductfunctionalGeneraldesignandassemblyassemblyprinciplerecognition

Assemblysequencerecognition

ItisaskedtorecognizetherightassemblysequenceTime(min)andimpossiblemountingconfigurations

Mistakes(%)

AssemblabilityItisaskedtodetectpositionalerrorsinassemblyerrorsdetectionandrecognizechangesinfunctionSurfacefinishingItisaskedtocomprehendsurfacefinishingcomprehensionandappropriatemanufacturingprocessesDesign

alternativesevaluation

Dimensionalandgeometrictolerances

DimensionaltolerancesdetectionGeometrictolerancesdetectionMatingtyperecognition

Itisaskedtoevaluateassemblysolutionalternativesanddetectwrongsolutions

Time(min)Mistakes(%)Time(min)Mistakes(%)Time(min)Mistakes(%)

Itisaskedtoidentify’dimensionalfeatureswheretolerancesareprescribed

Time(min)Mistakes(%)

Itisaskedtoidentifygeometricfeatureswheretolerancesareprescribed

Time(min)Mistakes(%)

Itisaskedtorecognizeifgaporinterferencematingsaredemanded

Time(min)Mistakes(%)

ToleranceschainItisaskedtorecognizetoleranceschainsandrecognitionreferencedimensionsGeometrictolerancesimpact

Itisaskedtocomprehendthedatumfeature,thetolerancesvaluesandtheirimpactonfunctionandmanufacturingprocess

Time(min)Mistakes(%)Time(min)Mistakes(%)

5Experimentaltests

OneoftheselectedVRcombinationsisevaluatedbythepro-posedprotocol.Theexperimentalset-uphasbeenchosenonthebasisofthebenchmarkingillustratedinSect.3.More-over,thewidespreadofavailableVRtechnologiesandtheirlowcostmakethearrangementofapropervirtualenviron-mentdifficulttoachieve.ItisnecessarytorecognizethemainlimitsandpotentialitiesofdifferentVRset-upsforspecificeducationpurposes.Theproposedmethodfortechnologicalbenchmarkingaimsatansweringsuchquestionsandiden-tifyingtheVRcombinationthatisbestsuitedtoimprovemechanicaldesignlearning.

Thespecificset-upconsistsofalargevolumedisplayprovidedwithstereoimagingandcoupledwithafinger-basedhapticdevice(C3).Actually,benchmarkingresultshavehighlightedthatC3combinationisthebesttocarryouttheproposedmechanicaldesigntasks.C3relativetotalvalue(0.78)isthenearesttobothrequestedfeedbacklevels(0.7and0.87).Thevisualizationtechnologyisrepresentedbyalargerearprojection-baseddisplaythatprovidespassivestereoscopy.BarcoProjectorsareusedtoprovidehighreso-lution.ThehaptictechnologyisrepresentedbyaPHANTOMdevice(PersonalHApticiNTerfaceMechanism)bySensA-bleTechnologies.Aphantomisahandedforcefeedbacktoolwhereastylusissupportedbyanelectromechanicalarm.Theuserholdsthestylusexperimentingforce,motionandtactilefeedback.ThehearingtechnologyconsistsofastereodigitalsystembyPioneerthatisconnectedwiththecentralworksta-tion.TheworkstationismadeupofaHPseriescomputer,anAMDOpteronprocessor,250GBharddisk,4GBRAMandtwoNVIDIAgraphiccards.ConcerningtheCADapplica-tion,SolidEdgeandVisMockupbyUGSareinstalledonthemachine.Thecrucialpointdealswiththehardware/software

123

112

Table3ProposedusabilitymetricsformechanicaldesignlearningUSdimEffectiveness

MetricsModelvisibilityInteractionsupportSensorialfeedback

Efficiency

InformationavailabilityEaseofuseMentalworkloadSystemreactivity

Satisfaction

PerceivedcomfortSimplicityofactionsPerceivedreliabilityInformationquality

Description

Itdefineswhethermodel’sparts,areclearlyvisibleandaccessiblefromthestudent’sperspective

ItmeasureshowthevirtualmodelcanbemanipulatedandmodifiedinallitsfeaturesItmeasuresthesystemcapacity’togivefeedbacktothestudent’sactionsbyinvolvingallsensorialchannels

Itdeterminesthesystemabilitytogetalltheinformationrequiredforperformingthespecifictask

Itmeasuresthelevelofphysicalandmentalcommitmentrequiredforperformingthespecifictask

Itindicatesthelevelofmentalstressandstrainduringtests,thatisrelatedtohowsystemsupportslearnability

Itmeasuressystempromptnessinfollowingstudent’sactionsandupdatethesceneinreal-time

Itmeasuresthelevelofcomfortperceivedbythestudentmmovingandmanipulatingobjectsinvirtualscene

Itquantifiesthecontrollabilityandease

providedbythesysteminactionandhandleparts

Itmeasuressafetyandreliabilityimpressionsperceivedbythestudentabouttechnologyandtools

Itmeasurestheclarityofthereceivedinformationandifitisgoodenoughforperformingthespecifictask

IntJInteractDesManuf(2011)5:103–117

QualitativemeasurePost-hocQ.scorePost-hocQ.scorePost-hocQ.scorePost-hocQ.scorePost-hocQ.scorePost-hocQ.scorePost-hocQ.scorePost-hocQ.scorePost-hocQ.scorePost-hocQ.scorePost-hocQ.score

QuantitativemeasureStatements,requestsforexplanation

Statements,requestsforfurthersupport

Statements,requestsformorefeedbackStatements,requestsforexplanation

Statements,requestsforexplanation

Statements,requestsforexplanation

Statements,requestsforfurtherreactionStatementsStatementsStatementsRequestsforfurtherinformation

connectioninordertointegratethehapticdevicewiththevirtualscene.Inthematterofcreatingthisconfiguration,avalidsolutionissuggestedbyarecentresearch[11].ItshowshowCADgeometrycanbetranslatedintotheproperdigitalformatreadablefromthephantomhapticdevice.Indetailasoftwareapplicationschainforconverting.jtfilesin.objfileshasbeendeveloped.

Thepresentedexperimentalset-upallowsuserstointeractwiththeVRinterfaceinanaturalmanner.Theycanalsoexpe-rienceamultimodallevelofperceptionbysimultaneouslyhavingvisual,auditoryandtactilefeedbacks.Inparticularthehapticdeviceintegrationmakesuserstoexperienceobjectsphysicalitybyenhancingthestiffnessperceivedthroughthestylus.Bycollectingperformanceandresponsefromusers,itispossibletoquantifywhetherandhowtheVRsystemsupportsthemintheirowngoals(Fig.4).

Theexperimentalarrangementhasbeentestedbythepro-posedprotocolinSect.4.Testshaveinvolvedtenmechanicaldesignstudentsattendingthefirstyearofamechanicalengineeringcourse.Thetestgrouphasbeendefinitelynonhomogenousinpracticeanddesigncompetenciesbecauseofdifferentsecondaryschoolbackgrounds.Inthestudygroup

Fig.4Proposedexperimentalset-upforevaluatingtheselectedVRcombination

fivestudentshaveatechnicalcollegeeducation,threeofthemattendedasecondaryschoolfocusingonsciencesandtwoofthemhadanon-technicaleducation.Studentshavebeenval-uatedbyindividualtestingsessionsinsteadofclasstestinginordertocollect20diverseresponsesandavoidrecipro-calinfluencesinanswering.Eachstudenthasbeenasked

123

IntJInteractDesManuf(2011)5:103–117Fig.5Exampleoftestingassemblyusedforperformanceanalysis

113

toexaminefivedifferentmechanicalassembliesofmedium-levelcomplexity.Theyallaremadeoutofabout20–25parts.Thetwo-dimensionaldrawinginFig.5depictsoneofthefiveassembliesselectedforthetrainingsessions.

Eachsingleassemblyisanalysedviathreedifferentrep-resentationalmeansforsupportinglearning:bytraditionaltwo-dimensionaldrawings,bytri-dimensionalCADmodelsandbyvirtualmock-ups.Tutorshavepreviouslypreparedthesameexercise.Itispresentedtostudentsbyadoptingthethreedifferentmeansofrepresentation.Infirstcaselecturesaresupportedbybi-dimensionaldrawingsandgeneralprin-ciplesareillustratedbyslides,inthesecondcaseaparametricmodelhasbeengeneratedinUGSSolidEdgeenvironmentanddisplayedbyacommondesktopcomputer.Finally,inthethirdcaseavirtualmock-uphasbeencreatedandvisualizedintheidentifiedvirtualset-up.Thedifferencebetweenthethreedifferentmeansallowscheckingprotocolvalidityandinvestigatingthequalityofthedifferenttechnologiessup-portingmechanicaldesigneducation.

Studentshavebeensubmittedtoperformanceanalysisasscheduledbyprotocolinthethreelearningchannels.Dur-ingtrainingsessionstheyhavebeenobservedbyexpertsandvideorecorded.Recordingstudentsatworkbyvideointer-actionanalysis(VIA)techniquehelpsexpertsincollectingobjectivedata,definingperformancemetricswithprecisionandgatheringusers’commentsorreactions.Nousabilityanalysishasbeencarriedoutbecauseofitsinherentnature.Meaningfulresultsarepresentedinfollowingtables.Foreachselectedtaskandforeachlearningchannel,metricsvaluesarecollected.Tables4and5respectivelyshowexamplesofresultsintermsoftimeandnumberofmistakes.Testshavebeenperformedinvolving10personson5assemblyexer-cises,totallyhaving50trials.Thenumberofsampleusershasbeendeterminedbyanalysingotherprotocolstudiescar-riedoutbyresearchersinpsychologyforstudyingcognitivebehavioursandthoughtprocesses[5].Asthepresentresearchisapilotstudyitistheminimumnumberrequestedtoper-formconcurrentprotocolbutshouldbeincreasedinordertovalidatethemethodandmakethestatisticresultssignificant.Meanvaluesintimehavebeencalculatedconsideringthetimeperformanceofeachstudentandapplyinga5%cut-offonthefinalGaussiandistribution.Percentagevaluesformistakesarecalculatedbycountingtotalwronganswersanddividingbythetotalattempts.A10%resultmeansthatfivetrialshavefailed,withoutspecifyinghowsomestudentsgivenoncorrectanswers.Inordertoproperlyinterpretingtheresults,itisworthytonoticethattasksareperformedinthesamesequencetheyarepresentedinTables4and5.There-foretimedataarenotabsoluteinvaluesbecausethefirstcomprehensionphasesinfluencethefollowingones.Tablesneedtobereadhorizontally,comparingdifferentlearningtoolsonthesametask,notvertically.Inthiswayitispos-sibletoidentifywhichactivitiestakeadvantagebytheVRlearningset-up.

Aspredictedintheprevioussections,theanalysishigh-lightsageneralpositivetrendusingtheexperimentalVRset-upinsteadoftheothermeansofrepresentation.Severaltestsresultsshowareductionintimeandmistakesnumber.Focusingonsinglevalues,itcanbestatedthatVRmakesgeneralassemblyrecognitionandsequencecomprehensioneasierandfasterthanotherrepresentations.Weconsiderthatismainlyaconsequenceoftheenhancedvisualandtactileperception.TheadoptedVRalsosupportssurfacefinishingcomprehensionandmatingtyperecognition.Highqualityrenderingandhapticfeedbackaredirectlyresponsibleforitalthoughtheadoptedtechnologyisnotabletoprovideafinetactilefeedbackaswellasrequested.

OtherVRtechnologiescombinations(C1,C2)couldnotprovidesimilarresults.Thefirstdoesnotsupportpartici-pationandinteractionbetweenmultiplestudentsandtutors

123

114IntJInteractDesManuf(2011)5:103–117

Table4Experimentalresultsofperformancetimeondifferentlearningchannels

TopicTaskLearningchannelsTime(ms)2Ddrawings

3DCADmodels10.3005.0007.1006.2010.2007.4010.1005.4010.0010.40

VRmockups08.1503.3006.5004.0010.5008.0011.0002.3010.2009.30

Functionaldesignandassemblyprinciples

GeneralassemblyrecognitionAssemblysequencerecognition

Asseinblabilityerrorsdetection

SurfacefinishingcomprehensionDesignalternativesevaluation

Dimensionaltolerancesdetection

Geometrictolerancesdetection

MatingtyperecognitionToleranceschainrecognition

Geometrictolerancesimpact

15.2006.3010.3008.4012.0005.1015.3006.0016.3020.10

Dimensionaland

geometrictolerances

Table5Experimentalresultsofperformancemistakesondifferentlearningchannels

TopicTaskLearningchannelsMistakes(%)2Ddrawings

3DCADmodels6181410382634262430

VRmockups4402302828202424

Functionaldesignandassemblyprinciples

GeneralassemblyrecognitionAssemblysequencerecognition

Asseinblabilityerrorsdetection

SurfacefinishingcomprehensionDesignalternativesevaluation

Dimensionaltolerancesdetection

Geometrictolerancesdetection

MatingtyperecognitionToleranceschainrecognition

Geometrictolerancesimpact

30333442503850365254

Dimensionaland

geometrictolerances

thatseemtobefundamentalforgeneralprinciplescompre-hensionafterexperiments.Thesecondonestimulatesonlythesenseofvisionwhileassemblyrecognitionneedalsoanhapticfeedbackasdemonstratedbystudentsrequestsandquestionnairesanswers.Usabilityanalysismayenforcethesestatementsoncecarriedoutonthedifferentmeansofrepre-sentation.WecouldacknowledgethattheadoptedVRset-updoesnotcreategreattimeadvantageifcomparedtodesktop-basedsystemssupportingbyCADtechnologies.Assemblabilityerrorsdetectionisavalidexample.Studentsneedsimilartimetounderstandbytrialanderror.HoweverVRmock-upsdeterminesignificantreductionsinmistakes.Thisisduetothefactthatstudentscandirectlyexperienceinterference

123

IntJInteractDesManuf(2011)5:103–117115

matingbythehapticphantomandthatthesystemitselfpre-ventsforerroneousmounting.

TheselectedVRcombinationset-upappearstosupportalotofdesignactivities.Howevernogreatimprovementsareachievedinfewreallyhardissuesincomparisonto3DCADmodels.Themeasuredvaluesoftimeandmistakesmet-ricsforeachrepresentationaresimilarinthefollowingtasks:designalternativeevaluation,tolerancechainrecognitionandgeometrictolerancesimpact.Thesepreliminaryresultswilldirectthechoiceofapropersoftwaretoolkittomodelandmanagevirtualmock-upsinordertomeetalltasksneces-saryformechanicsdesigneducation.Theadoptedsoftwaresystemactuallyallowsthesolerepresentationofnominalgeometry.Dimensionalandgeometrictolerancesprinciplesrequiresmorecomplexrepresentationsabletomakestudentsawareofthecomponentsandassembliesvariationsfromthenominalgeometryrespectivelyintermsofsizeandofform,orientation,locationandrun-out.

Analysiscouldbeimprovedbyassociatingtheinput/outputdeviceswithappropriatesoftwaretoolkitsinordertomanageassemblymatingandtoleranceschainsinamoreeffectiveway.Toachievethisissue,additionalinformationrelatedtomaterialpropertiesandreal-timedeformationisnecessary.Twomainapproachesarebeingpursuedtosupportinteractionsbetweenparts:physically-basedmodellingandconstraint-basedmodelling.Theybothprovidethesemanticinformationnecessaryforsimulatingphysicalassemblyandtolerancesinvirtualenvironment.Currentcommercialsys-temslackofageometricconstraintdetectionmanagement,soaspecificarchitectureshouldbearrangedandconnectedwiththecentralworkstation.

Statisticaltestsareperformedtobetterhighlighttheachievedresultssupportingtheabovementionedconsider-ations.

Histogramrepresentationscanbeusedtopointoutthetimeandmistakesmetricsvaluesdistributionforeachiden-Fig.6Histogramoftimemetric

tifiedtask(Figs.6,7).Bylookingatdiagramsit’seasytounderstandhowVRtechnologieshelpstudentsbyreduc-ingbothperformancetimeandmistakes.Howeveritcanbenoticedthatdropinmistakesratioismorerelevantthantimereduction.Almosteveryactivityhashighlightedgreatimprovementsandthemajoradvantageshavebeenreachedingeneralassemblyrecognition,assemblysequencerecog-nition,assemblabilityerrorsdetectionandsurfacefinishingcomprehension.Asanexample,assemblyrecognitionhasshowna30%ofmistakesin2Ddrawingmodality,insteadof6%with3DCADmodelsand4%withVRmock-ups.Thesurfacefinishingcomprehensionhasrevealedthebig-gestimprovement,froma42%ofmistakeswith2Ddraw-ingstoa10%with3DCADmodelsandtoa2%withVRmock-ups.Achievedadvantagesarelesssignificantfortol-erancesanalysis,suchasgeometrictolerancesdetectionandtoleranceschainrecognition.Thatstrengthenswhatstatedbeforeaboutthenecessityoffurthersupportsintolerancesanalysisactivities.

6Conclusionsandfuturework

ThepresentworkisastepforwardstheexplorationoftheadvantagesofVRinexperienced-learningapproachappli-cation.Itaimstodefineaproperevaluationprotocolandanadequateexperimentalset-upfortestingifmechanicalprod-uctdesignlearningisincrementedbyimmersingstudentsinavirtualenvironment.AlthoughtheuseofVRinteachingandlearningisnotnewinitself,experimentationismainlybasedonavailabletechnologiesnotreallysetforthespecificpurposes.AbenchmarkingmethodisproposedtoidentifytheproperVRtechnologiescombinationtosupportmechanicaldesigneducation.Thiscombinationisthenusedtostructurethevirtualset-upforexperiments.

123

116IntJInteractDesManuf(2011)5:103–117

Fig.7Histogramofmistakesmetrics

Performanceanalysishasbeencarriedoutonthreediffer-entmeansofrepresentation.Experimentalresultsshowthat:•2Ddrawing-basedteachingmethodrequiresalotofeffortintimeforcompletingallproposedtasksandimpliesalotofmistakes;

•3DCADmodelssupportstudentsbothingeneralassem-blyprincipleslearningandindesigntolerancesunder-standing.Mainprofitsarerepresentedbyagoodreductionbothintimeandmistakesnumber;

•VRmock-upsareabletobettersupportmechanicaldesignlearningandreachextrabenefits.Itisconfirmedbyfurtherreductionincompletiontimeandmistakesratio;•Virtualrealityallowsanenhancedvisualandtactileperceptionandagreatersensorialfeedback.Itmakesgeneralassemblyrecognition,sequencecomprehension,surfacefinishingcomprehensionandmatingtyperecog-nitioneasierandfasterthanotherrepresentations;

•VRmock-upsadvantagesaresignificantforthesimpleractivitiesifcomparedtoothersrepresentationtechniques,whiletheydecreaseforthemorecomplextasks;

•ThetestedVRcombination(C3)quiteproperlysupportsfunctionaldesignandassemblyprinciplesteachingbutneedtobeimprovedinordertobettersupporttoleranceslearning.Thescientificcontributionofthisworkconsistsintheselec-tionofaVRsystemaccordingtotheanalysisofperceptionandcognitionmechanismsinthelearningprocessandinthedevelopmentofagoal-orientedprotocolbasedonuserperformanceandsystemusability.Theproposedapproachcanbeadoptedtoothereducationapplication:benchmark-ingcanbeusedtoidentifywhichVRset-upbetteranswertospecificlearningpurposedwhiletheprotocolcansupportperformanceandusabilityanalysisofdifferentVRtechnol-

ogies.Thedifferenceconsistsintheactivitiesthatshouldbecarriedoutbysampleuserstoimprovelearningandthatdeterminethespecificcontext.

Moreover,themethodapplicabilityisnotlimitedtolearn-ingcontextsbutitcouldbeconsideredvalidforevaluatingtheuseofVRinindustrialapplicationsingeneral.Metricsjustneedtobenormalizedandweightscalibratedfornewspecificpurposes.

Futureworkscouldbeorientedtosetupamorecomplexexperimentalsystem,wherethepresentVRcombinationisupgradedbyamorecomplexsoftwaretoolkittoprovidebet-terperformances.FurtherdevelopmentscouldbeachievedbyjoiningVR-basedsystemwithcommercialCAT(Computer-AidedTolerances)softwareforstatisticaltolerancesanaly-sis.InsuchcontextCADmodelrepresentsthecommondatasourcefromwhichbothVR-basedandCATsystemsobtainthenecessaryinformation.Atthispointanalysiscanfollowtwodifferentapproaches:VR-basedassemblysimulationorCATtechnologyvariationsimulation.

Students’performancescouldbeevaluatedinbothcasesbyapplyingtheproposedprotocolandtheidentifiedmetrics.Thecomparisonofexperimentalresultsallowstopointoutstrengthsandweaknessesofeverytechnologyinsupportingmechanicseducation.References

1.Burdea,G.C.:Invitedreview:thesynergybetweenvirtualrealityandrobotics.IEEETrans.Robot.Autom.14,400–410(1999)2.Burdea,G.C.,Coiffet,P.:VirtualRealityTechnology,2thedn.Wiley,USA(2003)

3.Blavier,A.,Gaudissart,Q.,Cadiere,G.B.,Nyssen,A.S.:Compar-isonoflearningcurvesandskillstransferbetweenclassicalandroboticlaparoscopyaccordingtotheviewingconditions:implica-tionsfortraining.Am.J.Surg.194,115–121(2007)

4.Creem-Regehr,S.H.,Willemsen,P.,Gooch,A.,Thompson,W.:Theinfluenceofrestrictedviewingconditionsonegocentricdis-

123

IntJInteractDesManuf(2011)5:103–117

tanceperception:implicationsforrealandvirtualindoorenviron-ments.Perception34,191–204(2005)

5.Dorst,K.,Dijkhuis,J.:Comparingparadigmsfordescribingdesignactivity.Des.Stud.16,74–261(1995)

6.deSaGomes,A.,Zachmann,G.:Virtualrealityasatoolforverificationofassemblyandmaintenanceprocesses.Comput.Graph.23(3),389–403(1999)

7.Hamade,R.F.,Artail,H.A.,Jaber,M.Y.:EvaluatingthelearningprocessofmechanicalCADstudents.Comput.Educ.49,640–661(2007)

8.Hernandez,J.D.,Bann,S.D.,Munz,Y.:Qualitativeandquantita-tiveanalysisofthelearningcurveofasimulatedsurgicaltaskonthedaVincisystem.Surg.Endosc.18,372–378(2004)

9.Hix,D.,Hartson,H.R.:DevelopingUserInterfaces:EnsuringUsabilityThroughProduct&Process.Wiley,NewYork(1993)10.

Hakkarainen,K.,Lipponen,L.,Jarvela,S.:Epistemologyofinquiryandcomputersupportedcollaborativelearning.In:Koschmann,T.,Hall,R.,Miyakem,N.(eds.)CSCL:CarryingFor-wardtheConversation,pp.129–156.LawrenceErlbaum,Mahwah(2002)

11.Howard,B.M.,Vance,J.M.:Desktophapticvirtualassemblyusingphysicallybasedmodelling.VirtualReal.11,207–215(2007)12.ISO9241-11.ErgonomicRequirementsforOfficeWorkwithVisualDisplayTerminals(VDTs)—Part11:GuidanceonUsability(1998)

13.Kaye,A.R.LearningTogetherApart.In:KayeA.R.(ed.)Col-laborativeLearningandComputerConferencing.ComputerandSystemSciences(90).Springer,Berlin(1992)

14.

Kolb,D.A.:ExperientialLearning:ExperienceastheSourceofLearningandDevelopment.PrenticeHall/EnglewoodCliffs,NJ(1984)

117

15.Lieberman,M.B.:Thelearningcurve,diffusionandcompetitive

strategy.Strateg.Manag.J.8(5),441–452(1987)

16.Likert,R.,Hayes,S.:SomeApplicationsofBehavoiural

Research.UNESCO,Paris(1957)

17.Murgio,M.P.:CommunicationsGraphics(1969)

18.Mohler,J.L.:Methodologyonspatialproblemsolutionsamong

highandlowvisualachievers.J.Ind.Technol.24,1–9(2008)19.Mengoni,M.,Germani,M.,Bordegoni,M.:Virtualrealitysystems:

amethodtoevaluatetheapplicabilitybasedonthedesigncontext.In:ProceedingsoftheInternationalDesignEngineeringTechnicalConferences&ComputersandInformationinEngineeringCon-ference,September(2007)

20.Moran,S.,Rubio,R.,Gallego,R.,Suarez,J.,Martin,S.:

Proposalofinteractiveapplicationstoenhancestudent’sspatialperception.Comput.Educ.50,772–786(2008)

21.Oxman,R.:Educatingthedesignerthinker.Des.Stud.20,105–

122(1999)

22.Savall,J.,Borro,D.,Gil,J.J.,Matey,L.:Descriptionofahaptic

systemforvirtualmaintainabilityinaeronautics.In:ProceedingsofIEEE/RSJInternationalConferenceonIntelligentRobotsandSystems,Lusanne,Switzerland(2002)

23.SoH.,BrushT.A.:Studentperceptionofcollaborativelearning,

socialpresenceandsatisfactioninablendedlearningenvironment:relationshipsandcriticalfactors.Comput.Educ.(2007,inpress)24.Towle,E.,Mann,J.,Kinsy,B.:Workinprogress—development

oftoolstoimprovethespatialabilityofengineeringstudents.In:FrontiersinEducation,FIE’05.Proceedings35thAnnualConfer-ence(2005)

25.Volkov,S.A.,Vance,J.M.:Effectivenessofhapticsensationforthe

evaluationofvirtualprototypes.J.Comput.Inf.Sci.Eng.123,123–128(2001)

123

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- wuhaninfo.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务