搜索
您的当前位置:首页行列式与矩阵求逆练习

行列式与矩阵求逆练习

来源:乌哈旅游
第二章 行列式与矩阵求逆练习

班级: 姓名: 学号 :

一、计算下列行列式:

1031002041.199200395

301300600解:原式120051001252000

c32c2130001302412112.20110299

c1c231004314211211211解:原式2001100210011211002114214214212111213421二、确定下列排列的逆序数,并指出是偶排列还是奇排列? 1. 53214

解:逆序数t=7,为奇排列。

2. 18273645

解:逆序数t=12,为偶排列。

三、在6阶行列式中,a21a33a42a56a14a65,号? 解:

a32a43a14a51a66a25这两项应带有什么符

a21a33a42a56a14a65a14a21a33a42a56a65,逆序数为5,带负号;a32a43a14a51a66a25a14a25a32a43a51a66,逆序数为8,带正号。四、利用行列式的定义证明:

6

5432x0432x00

32x0002x0000x000000000066x5t解:由定义,左式(1)a1j1a2j2a3j3a4j4a5j5a6j6t(1)a15a24a33a42a51a66

6x5其中a15x,a24x,a33x,a42x,a51x,a666t为排列543216的逆序数,t10.五、利用行列式的性质计算下列各行列式:

23 1.

541214 271225r2r112解:原式r32r111r4r12195312057961212606按第3列展开13(1)11303

21000172522.023100414002350

5312按第5列展开231250解:原式(21)04140235按第1列展开

231066r22r310414100514r1r32352357

206115141080

x11x13.x1x11xx111

x111111x1011x1解:原式x11x11c1c1x111x1112x0xx11111110111按第1列展开11x1rr2r111x1x21x113r1x20xx11100xx2xx0xx4六、计算下列n阶行列式:

ab0000ab001.

00a00

000abb000aab00b0000ab0解:原式按第1列展开0aab(1)n10a000ab000a00aaan1b(1)n1bn1an(1)n1bn

8

000b

ab2.Dab2nba

baab00ab按第1ab解:原式列展开abab(1)12nabbabab0aba按行(列)展开a2D2n2n2b2D2n2(a2b2)D2n2(a2b)解:选第1行、第2n行的非零二阶子式Mabba,M的代数余子式AD2(n1)由拉普拉斯定理Da2b2)Dn2nMA(2(n1)(a2b2)七、证明

2100012100 D01200nn10002100012

10001210解:D按第1列展开n2D12n1(1)0120

000122Dn1Dn2 9

b0

则,DnDn1Dn1Dn221D23,D122

12DnDn1D2D11DnD1(n1)1n1x1x2x30八、问、取何值时,齐次方程组x1x2x30 有非零解?

x2xx0231解:设D1111110rr110021r3r211101(1)0 当0或1,齐次线性方程组有非零解。

九、求下列矩阵的逆矩阵: 1.A1132 4211 解:A322210

122.B1111312211解:B12210101130023.C0000000521 21000000

1201 10

A1解:CA23,A11,A1411131A341414A22,A23414000C1121211;A3,A301012

100041000410002001200011

十、求解下列矩阵方程:

01.101000100X10100101210140231 0101014312010解:X1000011200010143102010010000112001210134102

00011001 012.00430221

2X33 11

142121424解:X392123032101100333900113131421001其中032010r311011032010003001r1r2031001003100142r3910014222r30121r239312r130013r2301001390010030010013

3十一、设A42110, AB=A+2B, 求B. 123解:由ABA2BA2E)BAB(A2E)1A2231110423143423311015311021211231641232223100rr110010r22r11011001012rr131121001223100043121001011 12

8696129010120011(

r3r2110010r4r10014332十十二、证明下列等式: 011011010153r2r3rr404312011r32001161.(A1B1)1B(AB)1A

1证明:(A1B1)B(AB)A1(A1BE)(AB)A1(A1BA1A)(AB)AA(AB)(AB)AA1AE11(A1B1)B(AB)A11

n12.若A是n阶可逆矩阵,A*是A的伴随矩阵,证明A*A

解:A11A1*AA1*1AnA*, AAn1A1A*A

O十三、设n阶方阵A及s阶方阵B都可逆,求分块矩阵BX11X12OA解:设的逆矩阵是XBO21X22OAX11X12AX21AX22E1有BXOXXBXBO21221211AX21E1,A可逆,X21A1A的逆矩阵. OO,得E2

AX22O,左乘A,X22OBX11O,左乘B1,X11OBX12E2,X12B11

13

OABO1O1AB1 O 14

因篇幅问题不能全部显示,请点此查看更多更全内容

Top