torch.save(state, dir)
其中dir表示保存文件的绝对路径+保存文件名,如'/home/qinying/Desktop/modelpara.pth'
如果没有写绝对路径,就保存到当前路径下
torch.save(model,‘model.pth’) # 保存
model = torch.load(“model.pth”) # 加载
torch.save(model.state_dict(),“model.pth”) # 保存参数
model = model() # 代码中创建网络结构
params = torch.load(“model.pth”) # 加载参数
model.load_state_dict(params) # 应用到网络结构中
如果还想保存某一次训练采用的优化器、epochs等信息,可将这些信息组合起来构成一个字典,然后将字典保存起来:
state = {'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch}
torch.save(state, “model.pth”)
model = model() # 代码中创建网络结构
checkpoint = torch.load(“model.pth”)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
epoch = checkpoint(['epoch'])
来个简单的例子
参考了
#-*- coding:utf-8 -*-
'''本文件用于举例说明pytorch保存和加载文件的方法'''
__author__ = 'puxitong from UESTC'
import torch as torch
import torchvision as tv
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
import torch.backends.cudnn as cudnn
import datetime
import argparse
# 参数声明
batch_size = 32
epochs = 10
WORKERS = 0 # dataloder线程数
test_flag = True #测试标志,True时加载保存好的模型进行测试
ROOT = '/home/pxt/pytorch/cifar' # MNIST数据集保存路径
log_dir = '/home/pxt/pytorch/logs/cifar_model.pth' # 模型保存路径
# 加载MNIST数据集
transform = tv.transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
train_data = tv.datasets.CIFAR10(root=ROOT, train=True, download=True, transform=transform)
test_data = tv.datasets.CIFAR10(root=ROOT, train=False, download=False, transform=transform)
train_load = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=WORKERS)
test_load = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=WORKERS)
# 构造模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
self.conv4 = nn.Conv2d(256, 256, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(256 * 8 * 8, 1024)
self.fc2 = nn.Linear(1024, 256)
self.fc3 = nn.Linear(256, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(F.relu(self.conv2(x)))
x = F.relu(self.conv3(x))
x = self.pool(F.relu(self.conv4(x)))
x = x.view(-1, x.size()[1] * x.size()[2] * x.size()[3])
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
model = Net().cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 模型训练
def train(model, train_loader, epoch):
model.train()
train_loss = 0
for i, data in enumerate(train_loader, 0):
x, y = data
x = x.cuda()
y = y.cuda()
optimizer.zero_grad()
y_hat = model(x)
loss = criterion(y_hat, y)
loss.backward()
optimizer.step()
train_loss += loss
loss_mean = train_loss / (i+1)
print('Train Epoch: {}\t Loss: {:.6f}'.format(epoch, loss_mean.item()))
def main():
# 如果有保存的模型,则加载模型,并在其基础上继续训练
if os.path.exists(log_dir):
checkpoint = torch.load(log_dir)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
print('加载 epoch {} 成功!'.format(start_epoch))
else:
start_epoch = 0
print('无保存模型,将从头开始训练!')
for epoch in range(start_epoch+1, epochs):
train(model, train_load, epoch)
# 保存模型
state = {'model':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch':epoch}
torch.save(state, log_dir)
if __name__ == '__main__':
main()
因篇幅问题不能全部显示,请点此查看更多更全内容