Hadoop DataNode存储着Region Server管理的数据,所有HBase数据存储在HDFS文件系统中,Region Server在HDFS DataNode中是可配置的,并使数据存储靠近在它所需要的地方,就近服务,当往HBase写数据时Local,但是当一个region被移动之后,HBase的数据就不是Local的,除非做了压缩(compaction)操作。NameNode维护物理数据块的元数据信息。
HBase Table 通过rowkey range 的范围被水平切分成多个Region,一个Region包含了所有的,在Region开始键和结束之内的行,Regions被分配到集群的节点上,成为Region Servers,提供数据的读写服务,一个region server 可以服务1000个Region。
region中存储的是一张表的数据,当region中的数据条数过多的时候,会直接影响查询效率。当region过大的时候,region会拆分为两个region,HMaster会将分裂的region分配到不同的region server上,这样可以让请求分散到不同的Region Server上,已达到负载均衡,这也是HBase的一个优点。
ConstantSizeRegionSplitPolicy
当region中最大的store大小超过某个阈值(hbase.hregion.max.filesize=10G)之后就会触发切分,一个region等分为2个region。
但是在生产线上这种切分策略却有相当大的弊端(切分策略对于大表和小表没有明显的区分):
IncreasingToUpperBoundRegionSplitPolicy
0.94版本~2.0版本默认切分策略
总体看和ConstantSizeRegionSplitPolicy思路相同,一个region中最大的store大小大于设置阈值就会触发切分。
但是这个阈值并不像ConstantSizeRegionSplitPolicy是一个固定的值,而是会在一定条件下不断调整,调整规则和region所属表在当前regionserver上的region个数有关系.
region split阈值的计算公式是:
设regioncount:是region所属表在当前regionserver上的region的个数
阈值 = regioncount^3 * 128M * 2,当然阈值并不会无限增长,最大不超过MaxRegionFileSize(10G),当region中最大的store的大小达到该阈值的时候进行region split
例如:
特点
SteppingSplitPolicy
2.0版本默认切分策略
相比 IncreasingToUpperBoundRegionSplitPolicy 简单了一些
region切分的阈值依然和待分裂region所属表在当前regionserver上的region个数有关系
这种切分策略对于大集群中的大表、小表会比 IncreasingToUpperBoundRegionSplitPolicy 更加友好,小表不会再产生大量的小region,而是适可而止。
KeyPrefixRegionSplitPolicy
根据rowKey的前缀对数据进行分区,这里是指定rowKey的前多少位作为前缀,比如rowKey都是16位的,指定前5位是前缀,那么前5位相同的rowKey在相同的region中。
DelimitedKeyPrefixRegionSplitPolicy
保证相同前缀的数据在同一个region中,例如rowKey的格式为:userid_eventtype_eventid,指定的delimiter为 _ ,则split的的时候会确保userid相同的数据在同一个region中。
按照分隔符进行切分,而KeyPrefixRegionSplitPolicy是按照指定位数切分。
BusyRegionSplitPolicy
按照一定的策略判断Region是不是Busy状态,如果是即进行切分
如果你的系统常常会出现热点Region,而你对性能有很高的追求,那么这种策略可能会比较适合你。它会通过拆分热点Region来缓解热点Region的压力,但是根据热点来拆分Region也会带来很多不确定性因素,因为你也不知道下一个被拆分的Region是哪个。
DisabledRegionSplitPolicy
不启用自动拆分, 需要指定手动拆分
因篇幅问题不能全部显示,请点此查看更多更全内容